cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A363486 Low mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 6, 1, 2, 1, 7, 2, 8, 1, 2, 1, 9, 1, 3, 1, 2, 1, 10, 1, 11, 1, 2, 1, 3, 1, 12, 1, 2, 1, 13, 1, 14, 1, 2, 1, 15, 1, 4, 3, 2, 1, 16, 2, 3, 1, 2, 1, 17, 1, 18, 1, 2, 1, 3, 1, 19, 1, 2, 1, 20, 1, 21, 1, 3, 1, 4, 1, 22, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 23 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Extending the terminology of A124943, the "low mode" in a multiset is its least mode.

Crossrefs

Positions of first appearances are 1 and A000040.
Positions of 1's are A360013, counted by A241131.
For greatest instead of least we have A363487.
The version for median is A363941, triangle A124943.
The high version for median is A363942, triangle A124944.
The version for mean instead of mode is A363943, high A363944.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A356862 ranks partitions with a unique mode, counted by A362608.
A362605 ranks partitions with more than one mode, counted by A362607.
A362606 ranks partitions with more than one co-mode, counted by A362609.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A362616 ranks partitions (max part) = (unique mode), counted by A362612.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[If[n==1,0,First[modes[prix[n]]]],{n,30}]

A360013 Numbers whose exponent of 2 in their canonical prime factorization is larger than all the other exponents.

Original entry on oeis.org

2, 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 104, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 184, 188, 192, 200, 204, 208, 212, 220, 224, 228, 232, 236, 240, 244, 248, 256
Offset: 1

Views

Author

Amiram Eldar, Jan 21 2023

Keywords

Comments

Numbers k such that A007814(k) > A051903(A000265(k)).
The powers of 2 (A000079), except for 1, are all terms.
The product of any two terms (not necessarily distinct) is also a term.
This sequence is a disjoint union of {2} and the subsequences of numbers m of the form 2^k*o where o = A000265(m), the odd part of m, is a k-free number, for k >= 2. These subsequences include, for k = 2, numbers of the form 4*o where o is an odd squarefree number (A056911); for k = 3, numbers of the form 8*o where o is an odd cubefree number; etc.
The asymptotic density of this sequence is Sum_{k>=2} 1/(zeta(k)*2*(2^k-1)) = 0.222707226888193809... .
The asymptotic mean of the exponent of 2 in the prime factorization of the terms of this sequence is Sum_{k>=2} k/(zeta(k)*2*(2^k-1)) / Sum_{k>=2} 1/(zeta(k)*2*(2^k-1)) = 3.10346728882748723133... . [corrected by Amiram Eldar, Jul 10 2025]
This sequence is a subsequence of A360015 and the asymptotic density of this sequence within A360015 is exactly 1/2.
Also even numbers whose multiset of prime factors has unique mode 2. - Gus Wiseman, Jul 10 2023

Examples

			From _Gus Wiseman_, Jul 09 2023: (Start)
108 = 2*2*3*3*3 is missing because its mode is not 2.
180 = 2*2*3*3*5 is missing because 2 is not the unique mode.
120 = 2*2*2*3*5 is present because its unique mode is 2.
The terms together with their prime factorizations begin:
   2 = 2
   4 = 2*2
   8 = 2*2*2
  12 = 2*2*3
  16 = 2*2*2*2
  20 = 2*2*5
  24 = 2*2*2*3
  28 = 2*2*7
  32 = 2*2*2*2*2
  40 = 2*2*2*5
  44 = 2*2*11
  48 = 2*2*2*2*3
  52 = 2*2*13
  56 = 2*2*2*7
  60 = 2*2*3*5
  64 = 2*2*2*2*2*2
(End)
		

Crossrefs

Equals A360015 \ A360014.
Partitions of this type are counted by A241131.
Allowing any unique mode gives A356862, complement A362605.
Allowing any unique co-mode gives A359178, complement A362606.
Not requiring the mode to be unique gives A360015.
The opposite version is A362616, counted by A362612.
For co-mode instead of mode we have A364061, counted by A364062.
With least prime factor instead of 2, we have A364160, counted by A364193.
With a different factorization, we have the subsequence A335738.
A124010 gives prime signature, ordered A118914.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.

Programs

  • Mathematica
    q[n_] := Module[{e = IntegerExponent[n, 2], m}, m = n/2^e; (m == 1 && e > 0) || AllTrue[FactorInteger[m][[;; , 2]], # < e &]]; Select[Range[256], q]
  • PARI
    is(n) = {my(e = valuation(n, 2), m = n >> e); (m == 1 && e > 0) || (m > 1 && vecmax(factor(m)[,2]) < e)};

Formula

a(n) = 2*A360015(n). - Gus Wiseman, Jul 10 2023

A363487 High mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 1, 6, 4, 3, 1, 7, 2, 8, 1, 4, 5, 9, 1, 3, 6, 2, 1, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 1, 13, 4, 14, 1, 2, 9, 15, 1, 4, 3, 7, 1, 16, 2, 5, 1, 8, 10, 17, 1, 18, 11, 2, 1, 6, 5, 19, 1, 9, 4, 20, 1, 21, 12, 3, 1, 5, 6, 22, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Extending the terminology of A124944, the "high mode" in a multiset is its greatest mode.

Crossrefs

Positions of first appearances are 1 and A000040.
Positions of 1's are A360015, counted by A241131.
For low instead of high mode we have A363486.
The version for low median is A363941, triangle A124943.
The version for high median is A363942, triangle A124944.
The version for mean instead of mode is A363944, low A363943.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A356862 ranks partitions with a unique mode, counted by A362608.
A362605 ranks partitions with more than one mode, counted by A362607.
A362606 ranks partitions with more than one co-mode, counted by A362609.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A362616 ranks partitions (max part) = (unique mode), counted by A362612.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[If[n==1,0,Last[modes[prix[n]]]],{n,30}]

A363949 Numbers whose prime indices have mean 1 when rounded down.

Original entry on oeis.org

2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 96, 108, 112, 120, 128, 144, 160, 162, 168, 176, 180, 192, 200, 216, 224, 240, 256, 288, 320, 324, 336, 352, 360, 384, 400, 416, 432, 448, 480, 486, 504, 512, 528, 540, 560, 576, 600, 640
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

These partitions are counted by A025065.
Before rounding down we had A326567/A326568.
For mode instead of mean we have A360015, counted by A241131.
For median instead of mean we have A363488, counted by A027336.
Positions of 1's in A363943, triangle A363945.
For the usual rounding (not low or high) we have A363948, counted by A363947.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A360005 gives twice the median of prime indices.
A363941 gives low median of prime indices, triangle A124943.
A363942 gives high median of prime indices, triangle A124944.
For mean 2 instead of 1 we have A363950, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Floor[Mean[prix[#]]]==1&]

Formula

a(n) = 2*A344296(n).

A363950 Numbers whose prime indices have rounded-up mean 2.

Original entry on oeis.org

3, 6, 9, 10, 12, 18, 20, 24, 27, 28, 30, 36, 40, 48, 54, 56, 60, 72, 80, 81, 84, 88, 90, 96, 100, 108, 112, 120, 144, 160, 162, 168, 176, 180, 192, 200, 208, 216, 224, 240, 243, 252, 264, 270, 280, 288, 300, 320, 324, 336, 352, 360, 384, 400, 416, 432, 448
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     3: {2}
     6: {1,2}
     9: {2,2}
    10: {1,3}
    12: {1,1,2}
    18: {1,2,2}
    20: {1,1,3}
    24: {1,1,1,2}
    27: {2,2,2}
    28: {1,1,4}
    30: {1,2,3}
    36: {1,1,2,2}
    40: {1,1,1,3}
    48: {1,1,1,1,2}
    54: {1,2,2,2}
    56: {1,1,1,4}
    60: {1,1,2,3}
    72: {1,1,1,2,2}
    80: {1,1,1,1,3}
    81: {2,2,2,2}
		

Crossrefs

For mean 1 we have A000079 except 1.
Partitions of this type are counted by A026905 redoubled.
Equals the complement of A000079 in A344296.
Positions of 2's in A363944 (counted by column 2 of A363946).
For rounded mean 1 we have A363948, counted by A363947.
For rounded-down mean 1 we have A363949, counted by A025065.
The rounded-down or low version is A363954, counted by A363745.
A316413 ranks partitions with integer mean, counted by A067538.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A363941 gives low median of prime indices, triangle A124943.
A363942 gives high median of prime indices, triangle A124944.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Ceiling[Mean[prix[#]]]==2&]

A360014 Numbers whose exponent of 2 in their canonical prime factorization is equal to the maximum of the other exponents.

Original entry on oeis.org

1, 6, 10, 14, 22, 26, 30, 34, 36, 38, 42, 46, 58, 62, 66, 70, 74, 78, 82, 86, 94, 100, 102, 106, 110, 114, 118, 122, 130, 134, 138, 142, 146, 154, 158, 166, 170, 174, 178, 180, 182, 186, 190, 194, 196, 202, 206, 210, 214, 216, 218, 222, 226, 230, 238, 246, 252
Offset: 1

Views

Author

Amiram Eldar, Jan 21 2023

Keywords

Comments

Numbers k such that A007814(k) = A051903(A000265(k)).
This sequence is a disjoint union of {1}, the even squarefree numbers (A039956), and the subsequences of even k-free numbers that are not (k-1)-free, for k >= 3. These subsequences include, for k = 3, numbers of the form 4*o where o is an odd cubefree number that is not squarefree (i.e., an odd term of A067259).
The asymptotic density of this sequence is Sum_{k>=2} 1/(zeta(k)*2*(2^k-1)) = 0.222707226888193809... .
The asymptotic mean of the exponent of 2 in the prime factorization of the terms of this sequence is Sum_{k>=2} (k-2)/(zeta(k)*2*(2^k-1)) / Sum_{k>=2} 1/(zeta(k)*2*(2^k-1)) = 1.10346728882748723133... . [corrected by Amiram Eldar, Jul 10 2025]
This sequence is a subsequence of A360015 and the asymptotic density of this sequence within A360015 is exactly 1/2.

Crossrefs

Programs

  • Mathematica
    q[n_] := 2^(e = IntegerExponent[n, 2]) < n && e == Max[FactorInteger[n/2^e][[;; , 2]]]; q[1] = True; Select[Range[250], q]
  • PARI
    is(n) = {my(e = valuation(n, 2), m = n >> e); n == 1 ||(m > 1 && e == vecmax(factor(m)[,2]))};

A363488 Even numbers whose prime factorization has at least as many 2's as non-2's.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 26, 28, 32, 34, 36, 38, 40, 44, 46, 48, 52, 56, 58, 60, 62, 64, 68, 72, 74, 76, 80, 82, 84, 86, 88, 92, 94, 96, 100, 104, 106, 112, 116, 118, 120, 122, 124, 128, 132, 134, 136, 140, 142, 144, 146, 148, 152, 156, 158, 160
Offset: 1

Views

Author

Gus Wiseman, Jul 06 2023

Keywords

Comments

The multiset of prime factors of n is row n of A027746.
Also numbers whose prime factors have low median 2, where the low median (see A124943) is either the middle part (for odd length), or the least of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
     2: {1}            34: {1,7}             72: {1,1,1,2,2}
     4: {1,1}          36: {1,1,2,2}         74: {1,12}
     6: {1,2}          38: {1,8}             76: {1,1,8}
     8: {1,1,1}        40: {1,1,1,3}         80: {1,1,1,1,3}
    10: {1,3}          44: {1,1,5}           82: {1,13}
    12: {1,1,2}        46: {1,9}             84: {1,1,2,4}
    14: {1,4}          48: {1,1,1,1,2}       86: {1,14}
    16: {1,1,1,1}      52: {1,1,6}           88: {1,1,1,5}
    20: {1,1,3}        56: {1,1,1,4}         92: {1,1,9}
    22: {1,5}          58: {1,10}            94: {1,15}
    24: {1,1,1,2}      60: {1,1,2,3}         96: {1,1,1,1,1,2}
    26: {1,6}          62: {1,11}           100: {1,1,3,3}
    28: {1,1,4}        64: {1,1,1,1,1,1}    104: {1,1,1,6}
    32: {1,1,1,1,1}    68: {1,1,7}          106: {1,16}
		

Crossrefs

Partitions of this type are counted by A027336.
The case without high median > 1 is A072978.
For mode instead of median we have A360015, high A360013.
Positions of 1's in A363941.
For mean instead of median we have A363949, high A000079.
The high version is A364056, positions of 1's in A363942.
A067538 counts partitions with integer mean, ranks A316413.
A112798 lists prime indices, length A001222, sum A056239.
A124943 counts partitions by low median, high A124944.
A363943 gives low mean of prime indices, triangle A363945.

Programs

  • Mathematica
    Select[Range[100],EvenQ[#]&&PrimeOmega[#]<=2*FactorInteger[#][[1,2]]&]

A363948 Numbers whose prime indices have mean < 3/2.

Original entry on oeis.org

2, 4, 8, 12, 16, 24, 32, 48, 64, 72, 80, 96, 128, 144, 160, 192, 256, 288, 320, 384, 432, 448, 480, 512, 576, 640, 768, 864, 896, 960, 1024, 1152, 1280, 1536, 1728, 1792, 1920, 2048, 2304, 2560, 2592, 2688, 2816, 2880, 3072, 3200, 3456, 3584, 3840, 4096, 4608
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The initial terms, prime indices, and means:
    2: {1} -> 1
    4: {1,1} -> 1
    8: {1,1,1} -> 1
   12: {1,1,2} -> 4/3
   16: {1,1,1,1} -> 1
   24: {1,1,1,2} -> 5/4
   32: {1,1,1,1,1} -> 1
   48: {1,1,1,1,2} -> 6/5
   64: {1,1,1,1,1,1} -> 1
   72: {1,1,1,2,2} -> 7/5
   80: {1,1,1,1,3} -> 7/5
   96: {1,1,1,1,1,2} -> 7/6
		

Crossrefs

These partitions are counted by A363947.
Prime indices have mean A326567/A326568.
For low mode we have A360015, high A360013.
Positions of 1's in A363489.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A360005 gives twice the median of prime indices.
A363949 ranks partitions with low mean 1, counted by A025065.
A363950 ranks partitions with low mean 2, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]<3/2&]

A364061 Numbers whose exponent of 2 in their canonical prime factorization is smaller than all the other exponents.

Original entry on oeis.org

2, 4, 8, 16, 18, 32, 50, 54, 64, 98, 108, 128, 162, 242, 250, 256, 324, 338, 450, 486, 500, 512, 578, 648, 686, 722, 882, 972, 1024, 1058, 1250, 1350, 1372, 1458, 1682, 1922, 1944, 2048, 2178, 2250, 2450, 2500, 2646, 2662, 2738, 2916, 3042, 3362, 3698, 3888
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2023

Keywords

Comments

Also numbers whose multiset of prime factors has unique co-mode 2. Here, a co-mode in a multiset is an element that appears at most as many times as each of the other elements. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}.

Examples

			The terms together with their prime factors begin:
    2 = 2
    4 = 2*2
    8 = 2*2*2
   16 = 2*2*2*2
   18 = 2*3*3
   32 = 2*2*2*2*2
   50 = 2*5*5
   54 = 2*3*3*3
   64 = 2*2*2*2*2*2
   98 = 2*7*7
  108 = 2*2*3*3*3
  128 = 2*2*2*2*2*2*2
		

Crossrefs

For any unique co-mode: A359178, counted by A362610, complement A362606.
For high mode: A360013, positions of 1's in A363487, counted by A241131.
For low mode: A360015, positions of 1's in A363486, counted by A241131.
Partitions of this type are counted by A364062.
For low co-mode: A364158, positions of 1's in A364192, counted by A364159.
Positions of 1's in A364191, high A364192.
A112798 lists prime indices, length A001222, sum A056239.
A356862 ranks partitions w/ unique mode, count A362608, complement A362605.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.

Programs

  • Maple
    filter:= proc(n) local F,F2,Fo;
      F:= ifactors(n)[2];
      F2,Fo:= selectremove(t -> t[1]=2, F);
      Fo = [] or F2[1,2] < min(Fo[..,2])
    end proc:
    select(filter, 2*[$1..5000]); # Robert Israel, Apr 22 2024
  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Select[Range[100],comodes[prifacs[#]]=={2}&]
  • Python
    from sympy import factorint
    from itertools import count, islice
    def A364061_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:(l:=(~n&n-1).bit_length()) < min(factorint(m:=n>>l).values(),default=0) or m==1, count(max(startvalue+startvalue&1,2),2))
    A364061_list = list(islice(A364061_gen(),30)) # Chai Wah Wu, Jul 14 2023

Formula

Sum_{n>=1} 1/a(n) = 1 + Sum_{k>=2} (1-1/2^(k-1))*(s(k)-s(k+1)) = 1.16896822653093929144..., where s(k) = Product_{primes p >= 3} (1 + 1/(p^(k-1)*(p-1))) is the sum of reciprocals of the odd k-full numbers (numbers whose prime factorization has no exponent that is smaller than k). - Amiram Eldar, Aug 30 2024

A363952 Number of integer partitions of n with low mode k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 1, 0, 1, 0, 4, 2, 0, 0, 1, 0, 7, 2, 1, 0, 0, 1, 0, 9, 3, 2, 0, 0, 0, 1, 0, 13, 5, 2, 1, 0, 0, 0, 1, 0, 18, 6, 3, 2, 0, 0, 0, 0, 1, 0, 26, 9, 3, 2, 1, 0, 0, 0, 0, 1, 0, 32, 13, 5, 3, 2, 0, 0, 0, 0, 0, 1, 0, 47, 16, 7, 3, 2, 1, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 07 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Extending the terminology of A124943, the "low mode" of a multiset is the least mode.

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   2   0   1
   0   3   1   0   1
   0   4   2   0   0   1
   0   7   2   1   0   0   1
   0   9   3   2   0   0   0   1
   0  13   5   2   1   0   0   0   1
   0  18   6   3   2   0   0   0   0   1
   0  26   9   3   2   1   0   0   0   0   1
   0  32  13   5   3   2   0   0   0   0   0   1
   0  47  16   7   3   2   1   0   0   0   0   0   1
   0  60  21  10   4   3   2   0   0   0   0   0   0   1
   0  79  30  13   6   3   2   1   0   0   0   0   0   0   1
   0 104  38  17   7   4   3   2   0   0   0   0   0   0   0   1
Row n = 8 counts the following partitions:
  .  (71)        (62)     (53)   (44)  .  .  .  (8)
     (611)       (422)    (332)
     (521)       (3221)
     (5111)      (2222)
     (431)       (22211)
     (4211)
     (41111)
     (3311)
     (32111)
     (311111)
     (221111)
     (2111111)
     (11111111)
		

Crossrefs

Row sums are A000041.
For median: A124943 (high A124944), rank statistic A363941 (high A363942).
Column k = 1 is A241131 (partitions w/ low mode 1), ranks A360015, A360013.
The rank statistic for this triangle is A363486.
For mean: A363945 (high A363946), rank statistic A363943 (high A363944).
The high version is A363953.
A008284 counts partitions by length, A058398 by mean.
A362612 counts partitions (max part) = (unique mode), ranks A362616.
A362614 counts partitions by number of modes, rank statistic A362611.
A362615 counts partitions by number of co-modes, rank statistic A362613.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n], If[Length[#]==0,0,First[modes[#]]]==k&]],{n,0,15},{k,0,n}]
Showing 1-10 of 29 results. Next