A361848
Number of integer partitions of n such that (maximum) <= 2*(median).
Original entry on oeis.org
1, 2, 3, 5, 6, 9, 12, 15, 19, 26, 31, 40, 49, 61, 75, 93, 112, 137, 165, 199, 238, 289, 341, 408, 482, 571, 674, 796, 932, 1096, 1280, 1495, 1738, 2026, 2347, 2724, 3148, 3639, 4191, 4831, 5545, 6372, 7298, 8358, 9552, 10915, 12439, 14176, 16121, 18325
Offset: 0
The a(1) = 1 through a(7) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (2111) (222) (322)
(11111) (321) (331)
(2211) (421)
(21111) (2221)
(111111) (3211)
(22111)
(211111)
(1111111)
For example, the partition y = (3,2,2) has maximum 3 and median 2, and 3 <= 2*2, so y is counted under a(7).
For length instead of median we have
A237755.
For minimum instead of median we have
A237824.
For mean instead of median we have
A361851.
A000975 counts subsets with integer median.
Cf.
A008284,
A013580,
A027193,
A061395,
A067538,
A111907,
A240219,
A324562,
A359907,
A361394,
A361860.
A237821
Number of partitions of n such that 2*(least part) <= greatest part.
Original entry on oeis.org
0, 0, 1, 2, 4, 7, 11, 16, 25, 35, 48, 68, 92, 123, 164, 216, 282, 367, 471, 604, 769, 975, 1225, 1542, 1924, 2395, 2968, 3669, 4514, 5547, 6781, 8280, 10071, 12229, 14796, 17881, 21537, 25902, 31066, 37206, 44443, 53021, 63098, 74995, 88946, 105350, 124533
Offset: 1
a(6) = 7 counts these partitions: 51, 42, 411, 321, 3111, 2211, 21111.
From _Gus Wiseman_, May 15 2023: (Start)
The a(3) = 1 through a(8) = 16 partitions wirth 2*(least part) <= greatest part:
(21) (31) (41) (42) (52)
(211) (221) (51) (61)
(311) (321) (331)
(2111) (411) (421)
(2211) (511)
(3111) (2221)
(21111) (3211)
(4111)
(22111)
(31111)
(211111)
The a(3) = 1 through a(8) = 16 partitions with different median from maximum:
(21) (31) (32) (42) (43)
(211) (41) (51) (52)
(311) (321) (61)
(2111) (411) (322)
(2211) (421)
(3111) (511)
(21111) (3211)
(4111)
(22111)
(31111)
(211111)
(End)
These partitions have ranks
A069900.
The conjugate partitions have ranks
A362980.
-
z = 60; q[n_] := q[n] = IntegerPartitions[n];
Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}] (* A237820 *)
Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *)
Table[Count[q[n], p_ /; 2 Min[p] = = Max[p]], {n, z}](* A118096 *)
Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}] (* A053263 *)
Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* A237824 *)
A361853
Number of integer partitions of n such that (length) * (maximum) = 2n.
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 0, 1, 2, 4, 0, 10, 0, 8, 16, 10, 0, 31, 0, 44, 44, 20, 0, 92, 50, 28, 98, 154, 0, 266, 0, 154, 194, 48, 434, 712, 0, 60, 348, 910, 0, 1198, 0, 1120, 2138, 88, 0, 2428, 1300, 1680, 912, 2506, 0, 4808, 4800, 5968, 1372, 140, 0, 14820, 0, 160
Offset: 1
The a(6) = 2 through a(12) = 10 partitions:
(411) . (4211) (621) (5221) . (822)
(3111) (321111) (5311) (831)
(42211) (6222)
(43111) (6321)
(6411)
(422211)
(432111)
(441111)
(32211111)
(33111111)
The partition y = (6,4,1,1) has diagram:
o o o o o o
o o o o . .
o . . . . .
o . . . . .
Since the partition and its complement (shown in dots) have the same size, y is counted under a(12).
For minimum instead of mean we have
A118096.
For length instead of mean we have
A237753.
These partitions have ranks
A361855.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
Cf.
A111907,
A116608,
A188814,
A237755,
A237824,
A237984,
A240219,
A326849,
A327482,
A349156,
A359894.
A361851
Number of integer partitions of n such that (length) * (maximum) <= 2*n.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 12, 18, 23, 31, 37, 51, 58, 75, 96, 116, 126, 184, 193, 253, 307, 346, 402, 511, 615, 678, 792, 1045, 1088, 1386, 1419, 1826, 2181, 2293, 2779, 3568, 3659, 3984, 4867, 5885, 6407, 7732, 8124, 9400, 11683, 13025, 13269, 16216, 17774, 22016
Offset: 1
The a(1) = 1 through a(7) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (222) (322)
(2111) (321) (331)
(11111) (411) (421)
(2211) (2221)
(3111) (3211)
(21111) (22111)
(111111) (211111)
(1111111)
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 <= 2*7, so y is counted under a(7).
The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 is not <= 2*9, so y is not counted under a(9).
The partition y = (3,2,1,1) has diagram:
o o o
o o .
o . .
o . .
with complement of size 5, and 5 <= 7, so y is counted under a(7).
For length instead of mean we have
A237755.
For minimum instead of mean we have
A237824.
For median instead of mean we have
A361848.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
Cf.
A111907,
A237984,
A240219,
A324521,
A324562,
A327482,
A349156,
A360068,
A360071,
A360241,
A361394,
A361859.
A361855
Numbers > 1 whose prime indices satisfy (maximum) * (length) = 2*(sum).
Original entry on oeis.org
28, 40, 78, 84, 171, 190, 198, 220, 240, 252, 280, 351, 364, 390, 406, 435, 714, 748, 756, 765, 777, 784, 814, 840, 850, 925, 988, 1118, 1197, 1254, 1330, 1352, 1419, 1425, 1440, 1505, 1564, 1600, 1638, 1716, 1755, 1794, 1802, 1820, 1950, 2067, 2204, 2254
Offset: 1
The terms together with their prime indices begin:
28: {1,1,4}
40: {1,1,1,3}
78: {1,2,6}
84: {1,1,2,4}
171: {2,2,8}
190: {1,3,8}
198: {1,2,2,5}
220: {1,1,3,5}
240: {1,1,1,1,2,3}
252: {1,1,2,2,4}
280: {1,1,1,3,4}
The prime indices of 84 are {1,1,2,4}, with maximum 4, length 4, and sum 8, and 4*4 = 2*8, so 84 is in the sequence.
The prime indices of 120 are {1,1,1,2,3}, with maximum 3, length 5, and sum 8, and 3*5 != 2*8, so 120 is not in the sequence.
The prime indices of 252 are {1,1,2,2,4}, with maximum 4, length 5, and sum 10, and 4*5 = 2*10, so 252 is in the sequence.
The partition (5,2,2,1) with Heinz number 198 has diagram:
o o o o o
o o . . .
o o . . .
o . . . .
Since the partition and its complement (shown in dots) both have size 10, 198 is in the sequence.
A061395 gives greatest prime index.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,100],Max@@prix[#]*PrimeOmega[#]==2*Total[prix[#]]&]
A361858
Number of integer partitions of n such that the maximum is less than twice the median.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 8, 12, 15, 19, 22, 31, 34, 45, 55, 67, 78, 100, 115, 144, 170, 203, 238, 291, 337, 403, 473, 560, 650, 772, 889, 1046, 1213, 1414, 1635, 1906, 2186, 2533, 2913, 3361, 3847, 4433, 5060, 5808, 6628, 7572, 8615, 9835, 11158, 12698, 14394
Offset: 1
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(11111) (222) (322) (71)
(321) (331) (332)
(2211) (2221) (431)
(111111) (1111111) (2222)
(3221)
(3311)
(22211)
(11111111)
The partition y = (3,2,2,1) has maximum 3 and median 2, and 3 < 2*2, so y is counted under a(8).
For minimum instead of median we have
A053263.
For length instead of median we have
A237754.
For mean instead of median we have
A361852.
A000975 counts subsets with integer median.
Cf.
A008284,
A027193,
A237751,
A237755,
A237820,
A237824,
A240219,
A361394,
A361851,
A361860,
A361907.
A237820
Number of partitions of n such that 2*(least part) < greatest part.
Original entry on oeis.org
0, 0, 0, 1, 2, 4, 8, 12, 19, 29, 42, 58, 83, 112, 151, 202, 267, 347, 453, 581, 744, 948, 1198, 1505, 1889, 2356, 2925, 3621, 4465, 5486, 6724, 8212, 9999, 12151, 14715, 17784, 21442, 25795, 30952, 37079, 44315, 52871, 62950, 74827, 88767, 105159, 124335
Offset: 1
a(6) = 4 counts these partitions: 51, 411, 321, 3111.
-
z = 60; q[n_] := q[n] = IntegerPartitions[n];
Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}] (* A237820 *)
Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *)
Table[Count[q[n], p_ /; 2 Min[p] = = Max[p]], {n, z}](* A118096 *)
Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}] (* A053263 *)
Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* A237824 *)
-
A(n) = {concat([0,0,0], Vec(sum(i=1, n, sum(j=1, n-3*i, x^(3*i+j)/prod(k=i, min(n-3*i-j,2*i+j), 1-x^k)))+ O('x^(n+1))))} \\ John Tyler Rascoe, Jun 21 2025
A361859
Number of integer partitions of n such that the maximum is greater than or equal to twice the median.
Original entry on oeis.org
0, 0, 0, 1, 2, 3, 7, 10, 15, 23, 34, 46, 67, 90, 121, 164, 219, 285, 375, 483, 622, 799, 1017, 1284, 1621, 2033, 2537, 3158, 3915, 4832, 5953, 7303, 8930, 10896, 13248, 16071, 19451, 23482, 28272, 33977, 40736, 48741, 58201, 69367, 82506, 97986, 116139
Offset: 1
The a(4) = 1 through a(9) = 15 partitions:
(211) (311) (411) (421) (422) (522)
(2111) (3111) (511) (521) (621)
(21111) (3211) (611) (711)
(4111) (4211) (4221)
(22111) (5111) (4311)
(31111) (32111) (5211)
(211111) (41111) (6111)
(221111) (33111)
(311111) (42111)
(2111111) (51111)
(321111)
(411111)
(2211111)
(3111111)
(21111111)
The partition y = (5,2,2,1) has maximum 5 and median 2, and 5 >= 2*2, so y is counted under a(10).
For length instead of median we have
A237752.
For minimum instead of median we have
A237821.
Reversing the inequality gives
A361848.
The complement is counted by
A361858.
These partitions have ranks
A361868.
For mean instead of median we have
A361906.
A000975 counts subsets with integer median.
Cf.
A008284,
A027193,
A067538,
A237755,
A237820,
A237824,
A240219,
A359907,
A361851,
A361860,
A361907.
A361906
Number of integer partitions of n such that (length) * (maximum) >= 2*n.
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 3, 5, 9, 15, 19, 36, 43, 68, 96, 125, 171, 232, 297, 418, 529, 676, 853, 1156, 1393, 1786, 2316, 2827, 3477, 4484, 5423, 6677, 8156, 10065, 12538, 15121, 17978, 22091, 26666, 32363, 38176, 46640, 55137, 66895, 79589, 92621, 111485, 133485
Offset: 1
The a(6) = 2 through a(10) = 15 partitions:
(411) (511) (611) (621) (721)
(3111) (4111) (4211) (711) (811)
(31111) (5111) (5211) (5221)
(41111) (6111) (5311)
(311111) (42111) (6211)
(51111) (7111)
(321111) (42211)
(411111) (43111)
(3111111) (52111)
(61111)
(421111)
(511111)
(3211111)
(4111111)
(31111111)
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 >= 2*8, so y is counted under a(8).
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not >= 2*7, so y is not counted under a(7).
The partition y = (3,2,1,1) has diagram:
o o o
o o .
o . .
o . .
with complement (shown in dots) of size 5, and 5 is not >= 7, so y is not counted under a(7).
The complement is counted by
A361852.
Reversing the inequality gives
A361851.
A051293 counts subsets with integer mean.
A361907
Number of integer partitions of n such that (length) * (maximum) > 2*n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 3, 4, 7, 11, 19, 26, 43, 60, 80, 115, 171, 201, 297, 374, 485, 656, 853, 1064, 1343, 1758, 2218, 2673, 3477, 4218, 5423, 6523, 7962, 10017, 12104, 14409, 17978, 22031, 26318, 31453, 38176, 45442, 55137, 65775, 77451, 92533, 111485, 131057
Offset: 1
The a(7) = 3 through a(10) = 11 partitions:
(511) (611) (711) (721)
(4111) (5111) (5211) (811)
(31111) (41111) (6111) (6211)
(311111) (42111) (7111)
(51111) (52111)
(411111) (61111)
(3111111) (421111)
(511111)
(3211111)
(4111111)
(31111111)
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not > 2*7, so y is not counted under a(7).
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 is not > 2*8, so y is not counted under a(8).
The partition y = (5,1,1,1) has length 4 and maximum 5, and 4*5 > 2*8, so y is counted under a(8).
The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 > 2*9, so y is counted under a(9).
The partition y = (3,2,1,1) has diagram:
o o o
o o .
o . .
o . .
with complement (shown in dots) of size 5, and 5 is not > 7, so y is not counted under a(7).
Reversing the inequality gives
A361852.
A051293 counts subsets with integer mean.
A116608 counts partitions by number of distinct parts.
Cf.
A027193,
A111907,
A237752,
A237755,
A237821,
A237824,
A237984,
A324562,
A326622,
A327482,
A349156,
A360071,
A361394.
Showing 1-10 of 29 results.
Comments