A359893
Triangle read by rows where T(n,k) is the number of integer partitions of n with median k, where k ranges from 1 to n in steps of 1/2.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 0, 0, 1, 2, 0, 2, 0, 0, 0, 1, 3, 0, 1, 2, 0, 0, 0, 0, 1, 4, 1, 2, 0, 3, 0, 0, 0, 0, 0, 1, 6, 1, 3, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1, 8, 1, 6, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 11, 2, 7, 1, 3, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Triangle begins:
1
1 0 1
1 1 0 0 1
2 0 2 0 0 0 1
3 0 1 2 0 0 0 0 1
4 1 2 0 3 0 0 0 0 0 1
6 1 3 0 1 3 0 0 0 0 0 0 1
8 1 6 0 2 0 4 0 0 0 0 0 0 0 1
11 2 7 1 3 0 1 4 0 0 0 0 0 0 0 0 1
15 2 10 3 4 0 2 0 5 0 0 0 0 0 0 0 0 0 1
20 3 13 3 7 0 3 0 1 5 0 0 0 0 0 0 0 0 0 0 1
26 4 19 3 11 1 4 0 2 0 6 0 0 0 0 0 0 0 0 0 0 0 1
For example, row n = 8 counts the following partitions:
611 4211 422 . 332 . 44 . . . . . . . 8
5111 521 431 53
32111 2222 62
41111 3221 71
221111 3311
311111 22211
2111111
11111111
Row lengths are 2n-1 =
A005408(n-1).
The median statistic is ranked by
A360005(n)/2.
A240219 counts partitions w/ the same mean as median, complement
A359894.
-
Table[Length[Select[IntegerPartitions[n], Median[#]==k&]],{n,1,10},{k,1,n,1/2}]
A359901
Triangle read by rows where T(n,k) is the number of integer partitions of n with median k = 1..n.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 2, 2, 0, 1, 3, 1, 0, 0, 1, 4, 2, 3, 0, 0, 1, 6, 3, 1, 0, 0, 0, 1, 8, 6, 2, 4, 0, 0, 0, 1, 11, 7, 3, 1, 0, 0, 0, 0, 1, 15, 10, 4, 2, 5, 0, 0, 0, 0, 1, 20, 13, 7, 3, 1, 0, 0, 0, 0, 0, 1, 26, 19, 11, 4, 2, 6, 0, 0, 0, 0, 0, 1
Offset: 1
Triangle begins:
1
1 1
1 0 1
2 2 0 1
3 1 0 0 1
4 2 3 0 0 1
6 3 1 0 0 0 1
8 6 2 4 0 0 0 1
11 7 3 1 0 0 0 0 1
15 10 4 2 5 0 0 0 0 1
20 13 7 3 1 0 0 0 0 0 1
26 19 11 4 2 6 0 0 0 0 0 1
35 24 14 5 3 1 0 0 0 0 0 0 1
45 34 17 8 4 2 7 0 0 0 0 0 0 1
58 42 23 12 5 3 1 0 0 0 0 0 0 0 1
For example, row n = 9 counts the following partitions:
(7,1,1) (5,2,2) (3,3,3) (4,4,1) . . . . (9)
(6,1,1,1) (6,2,1) (4,3,2)
(3,3,1,1,1) (3,2,2,2) (5,3,1)
(4,2,1,1,1) (4,2,2,1)
(5,1,1,1,1) (4,3,1,1)
(3,2,1,1,1,1) (2,2,2,2,1)
(4,1,1,1,1,1) (3,2,2,1,1)
(2,2,1,1,1,1,1)
(3,1,1,1,1,1,1)
(2,1,1,1,1,1,1,1)
(1,1,1,1,1,1,1,1,1)
Including half-steps gives
A359893.
The median statistic is ranked by
A360005(n)/2.
A240219 counts partitions w/ the same mean as median, complement
A359894.
-
Table[Length[Select[IntegerPartitions[n],Median[#]==k&]],{n,15},{k,n}]
A307683
Number of partitions of n having a non-integer median.
Original entry on oeis.org
0, 0, 1, 0, 2, 1, 4, 1, 7, 5, 11, 8, 18, 17, 31, 28, 47, 51, 75, 81, 119, 134, 181, 206, 277, 323, 420, 488, 623, 737, 922, 1084, 1352, 1597, 1960, 2313, 2819, 3330, 4029, 4743, 5704, 6722, 8030, 9434, 11234, 13175, 15601, 18262, 21552, 25184, 29612, 34518
Offset: 1
a(7) counts these 4 partitions: [6,1], [5,2], [4,3], [3,2,1,1].
Cf.
A000016,
A051293,
A067538,
A082550,
A240219,
A240850,
A316413,
A326567/
A326568,
A327475,
A359897,
A360005.
A359894
Number of integer partitions of n whose parts do not have the same mean as median.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 3, 10, 13, 20, 28, 49, 53, 93, 113, 145, 203, 287, 329, 479, 556, 724, 955, 1242, 1432, 1889, 2370, 2863, 3502, 4549, 5237, 6825, 8108, 9839, 12188, 14374, 16958, 21617, 25852, 30582, 36100, 44561, 51462, 63238, 73386, 85990, 105272, 124729
Offset: 0
The a(4) = 1 through a(8) = 13 partitions:
(211) (221) (411) (322) (332)
(311) (3111) (331) (422)
(2111) (21111) (421) (431)
(511) (521)
(2221) (611)
(3211) (4211)
(4111) (5111)
(22111) (22211)
(31111) (32111)
(211111) (41111)
(221111)
(311111)
(2111111)
The complement is counted by
A240219.
A008289 counts strict partitions by mean.
A359909 counts factorizations with the same mean as median, odd-len
A359910.
-
Table[Length[Select[IntegerPartitions[n],Mean[#]!=Median[#]&]],{n,0,30}]
A359912
Numbers whose prime indices do not have integer median.
Original entry on oeis.org
1, 6, 14, 15, 26, 33, 35, 36, 38, 51, 58, 60, 65, 69, 74, 77, 84, 86, 93, 95, 106, 119, 122, 123, 132, 141, 142, 143, 145, 150, 156, 158, 161, 177, 178, 185, 196, 201, 202, 204, 209, 210, 214, 215, 216, 217, 219, 221, 225, 226, 228, 249, 262, 265, 276, 278
Offset: 1
The terms together with their prime indices begin:
1: {}
6: {1,2}
14: {1,4}
15: {2,3}
26: {1,6}
33: {2,5}
35: {3,4}
36: {1,1,2,2}
38: {1,8}
51: {2,7}
58: {1,10}
60: {1,1,2,3}
For prime factors instead of indices we have
A072978, complement
A359913.
These partitions are counted by
A307683.
Cf.
A026424,
A051293,
A067538,
A175352,
A175761,
A289509,
A359890,
A359905,
A360006,
A359907,
A360009.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!IntegerQ[Median[prix[#]]]&]
A360068
Number of integer partitions of n such that the parts have the same mean as the multiplicities.
Original entry on oeis.org
1, 1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 6, 0, 0, 0, 6, 0, 7, 0, 1, 0, 0, 0, 0, 90, 0, 63, 0, 0, 0, 0, 11, 0, 0, 0, 436, 0, 0, 0, 0, 0, 0, 0, 0, 2157, 0, 0, 240, 1595, 22, 0, 0, 0, 6464, 0, 0, 0, 0, 0, 0, 0, 0, 11628, 4361, 0, 0, 0, 0, 0, 0, 0, 12927, 0, 0, 621, 0
Offset: 0
The n = 1, 4, 8, 9, 12, 16, 18 partitions (D=13):
(1) (22) (3311) (333) (322221) (4444) (444222)
(5111) (332211) (43222111) (444411)
(422211) (43321111) (552222)
(522111) (53221111) (555111)
(531111) (54211111) (771111)
(621111) (63211111) (822222)
(D11111)
For example, the partition (4,3,3,3,3,3,2,2,1,1) has mean 5/2, and its multiplicities (1,5,2,2) also have mean 5/2, so it is counted under a(20).
Positions of positive terms are
A360070.
A360069 counts partitions whose multiplicities have integer mean.
-
Table[Length[Select[IntegerPartitions[n],Mean[#]==Mean[Length/@Split[#]]&]],{n,0,30}]
A348551
Heinz numbers of integer partitions whose mean is not an integer.
Original entry on oeis.org
1, 6, 12, 14, 15, 18, 20, 24, 26, 33, 35, 36, 38, 40, 42, 44, 45, 48, 50, 51, 52, 54, 56, 58, 60, 63, 65, 66, 69, 70, 72, 74, 75, 76, 77, 80, 86, 92, 93, 95, 96, 102, 104, 106, 108, 112, 114, 117, 119, 120, 122, 123, 124, 126, 130, 132, 135, 136, 140, 141, 142
Offset: 1
The terms and their prime indices begin:
1: {}
6: {1,2}
12: {1,1,2}
14: {1,4}
15: {2,3}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
26: {1,6}
33: {2,5}
35: {3,4}
36: {1,1,2,2}
38: {1,8}
40: {1,1,1,3}
42: {1,2,4}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
The geometric version is the complement of
A326623.
The conjugate version is the complement of
A326836.
These partitions are counted by
A349156.
A001222 counts prime factors with multiplicity.
A143773 counts partitions into multiples of the length, ranked by
A316428.
A236634 counts unbalanced partitions.
A327472 counts partitions not containing their mean, complement
A237984.
Cf.
A067539,
A096199,
A098743,
A175397,
A175761,
A289508,
A289509,
A290103,
A326028,
A326645,
A326837.
-
q:= n-> (l-> nops(l)=0 or irem(add(i, i=l), nops(l))>0)(map
(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2])):
select(q, [$1..142])[]; # Alois P. Heinz, Nov 19 2021
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!IntegerQ[Mean[primeMS[#]]]&]
A360009
Numbers whose prime indices have integer mean and integer median.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 37, 39, 41, 43, 46, 47, 49, 53, 55, 57, 59, 61, 62, 64, 67, 68, 71, 73, 78, 79, 81, 82, 83, 85, 87, 88, 89, 90, 91, 94, 97, 98, 99, 100, 101, 103, 105, 107, 109, 110, 111
Offset: 1
The terms together with their prime indices begin:
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
21: {2,4}
22: {1,5}
23: {9}
25: {3,3}
27: {2,2,2}
28: {1,1,4}
These partitions are counted by
A359906.
The median of prime indices is given by
A360005/2.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],IntegerQ[Mean[prix[#]]]&&IntegerQ[Median[prix[#]]]&]
A363946
Triangle read by rows where T(n,k) is the number of integer partitions of n with high mean k.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 0, 1, 0, 1, 3, 2, 0, 1, 0, 1, 6, 3, 0, 0, 1, 0, 1, 6, 4, 3, 0, 0, 1, 0, 1, 11, 5, 4, 0, 0, 0, 1, 0, 1, 11, 13, 0, 4, 0, 0, 0, 1, 0, 1, 18, 9, 8, 5, 0, 0, 0, 0, 1, 0, 1, 18, 21, 10, 0, 5, 0, 0, 0, 0, 1
Offset: 0
Triangle begins:
1
0 1
0 1 1
0 1 1 1
0 1 3 0 1
0 1 3 2 0 1
0 1 6 3 0 0 1
0 1 6 4 3 0 0 1
0 1 11 5 4 0 0 0 1
0 1 11 13 0 4 0 0 0 1
0 1 18 9 8 5 0 0 0 0 1
0 1 18 21 10 0 5 0 0 0 0 1
0 1 29 28 12 0 6 0 0 0 0 0 1
0 1 29 32 18 14 0 6 0 0 0 0 0 1
0 1 44 43 23 16 0 7 0 0 0 0 0 0 1
0 1 44 77 27 19 0 0 7 0 0 0 0 0 0 1
Row n = 7 counts the following partitions:
. (1111111) (4111) (511) (61) . . (7)
(3211) (421) (52)
(31111) (331) (43)
(2221) (322)
(22111)
(211111)
For median instead of mean we have rank statistic
A363942, low
A363941.
The rank statistic for this triangle is
A363944.
Cf.
A002865,
A025065,
A237984,
A327472,
A327482,
A344296,
A362612,
A363723,
A363724,
A363731,
A363948.
-
meanup[y_]:=If[Length[y]==0,0,Ceiling[Mean[y]]];
Table[Length[Select[IntegerPartitions[n],meanup[#]==k&]],{n,0,15},{k,0,n}]
A360241
Number of integer partitions of n whose distinct parts have integer mean.
Original entry on oeis.org
0, 1, 2, 2, 4, 3, 8, 6, 13, 13, 22, 19, 43, 34, 56, 66, 97, 92, 156, 143, 233, 256, 322, 341, 555, 542, 710, 831, 1098, 1131, 1644, 1660, 2275, 2484, 3035, 3492, 4731, 4848, 6063, 6893, 8943, 9378, 12222, 13025, 16520, 18748, 22048, 24405, 31446, 33698, 41558
Offset: 0
The a(1) = 1 through a(8) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (331) (44)
(31) (11111) (42) (511) (53)
(1111) (51) (3211) (62)
(222) (31111) (71)
(321) (1111111) (422)
(3111) (2222)
(111111) (3221)
(3311)
(5111)
(32111)
(311111)
(11111111)
For example, the partition (32111) has distinct parts {1,2,3} with mean 2, so is counted under a(8).
For parts instead of distinct parts we have
A067538, ranked by
A316413.
These partitions are ranked by
A326621.
For multiplicities instead of distinct parts:
A360069, ranked by
A067340.
A008284 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
A360071 counts partitions by number of parts and number of distinct parts.
The following count partitions:
-
Table[Length[Select[IntegerPartitions[n],IntegerQ[Mean[Union[#]]]&]],{n,0,30}]
Showing 1-10 of 35 results.
Comments