cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jon Awbrey

Jon Awbrey's wiki page.

Jon Awbrey has authored 45 sequences. Here are the ten most recent ones:

A112846 Number of riffs on n or fewer nodes. Number of rotes on 2n+1 or fewer nodes.

Original entry on oeis.org

1, 2, 4, 10, 30, 103, 384, 1508, 6126, 25513, 108278, 466523, 2034981, 8968746, 39875940, 138760603, 178636543, 3026583484, 16028356176, 75647274620, 350111055991, 1618175863400, 7495933933620, 34821723061950
Offset: 0

Author

Jon Awbrey, Oct 04 2005, based on calculations by Vladeta Jovovic and David W. Wilson

Keywords

Comments

Partial sums of A061396.

A112868 Positive integers sorted by rote weight and primal code characteristic.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 5, 7, 8, 16, 10, 12, 14, 18, 11, 13, 17, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536, 22, 26, 34, 36, 38, 46, 50, 54, 98, 106, 125, 162, 2401, 15, 21, 29, 31, 37, 41, 43, 59, 61, 67, 83, 97, 103, 121, 131, 169, 227, 241, 243, 289, 311, 34, 361
Offset: 1

Author

Jon Awbrey, Oct 13 2005

Keywords

Comments

Positive integers m sorted by g(m) = A062537(m) and q(m) = A108352(m).

Examples

			Primal Functions, Primal Codes, Sort Parameters, Subtotals
==========================================================
Primal Function | ` ` ` Primal Code ` = ` a | g q | s | t
==========================================================
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 1 | 1 | 1
==========================================================
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 0 | 1 | 1
==========================================================
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 2 | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 2 | 2 | 2
==========================================================
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 6 | 3 0 | ` |
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 9 | 3 0 | 2 |
----------------+---------------------------+-----+---+---
3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 2 | ` |
4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 2 | ` |
1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 2 | ` |
1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `16 | 3 2 | 4 | 6
==========================================================
1:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `10 | 4 0 | ` |
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `12 | 4 0 | ` |
1:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `14 | 4 0 | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `18 | 4 0 | 4 |
----------------+---------------------------+-----+---+---
5:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `11 | 4 2 | ` |
6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `13 | 4 2 | ` |
7:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `17 | 4 2 | ` |
8:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `19 | 4 2 | ` |
9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `23 | 4 2 | ` |
3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `25 | 4 2 | ` |
2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `27 | 4 2 | ` |
1:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `32 | 4 2 | ` |
4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `49 | 4 2 | ` |
16:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `53 | 4 2 | ` |
1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `64 | 4 2 | ` |
2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `81 | 4 2 | ` |
1:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 128 | 4 2 | ` |
1:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 256 | 4 2 | ` |
1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 512 | 4 2 | ` |
1:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 65536 | 4 2 |16 |20
==========================================================
a = this sequence
g = rote weight in gammas = A062537
q = primal code character = A108352
s = count in (g, q) class = A112869
t = count in weight class = A061396
		

A112869 Triangle T(g, q) = number of rotes of weight g and primal code characteristic q.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 16, 13, 56, 4
Offset: 1

Author

Jon Awbrey, Oct 13 2005

Keywords

Comments

T(g, q) = |{positive integers m : A062537(m) = g and A108352(m) = q}|.
This is the column that is labeled "s" in the tabulation of A112868.
Row sums = A061396.

Examples

			Table T(g, q), omitting empty cells, begins as follows:
g\q| 0 ` 1 ` 2 ` 3 ` 4 ` 5
---+-----------------------
`0 | ` ` 1 ` ` ` ` ` ` ` `
`1 | 1 ` ` ` ` ` ` ` ` ` `
`2 | ` ` ` ` 2 ` ` ` ` ` `
`3 | 2 ` ` ` 4 ` ` ` ` ` `
`4 | 4 ` ` `16 ` ` ` ` ` `
`5 |13 ` ` `56 ` 4 ` ` ` `
		

A113197 Positive integers sorted by rote weight, rote height and rote quench.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 5, 7, 8, 16, 12, 18, 10, 14, 13, 23, 25, 27, 49, 64, 81, 512, 11, 17, 19, 32, 53, 128, 256, 65536, 36, 26, 46, 50, 54, 98, 125, 162, 2401, 15, 21, 37, 61, 169, 343, 529, 625, 729, 4096, 19683, 262144, 20, 24, 28, 48, 22, 34, 38, 106, 29, 41, 43, 83, 97
Offset: 1

Author

Jon Awbrey, Oct 18 2005

Keywords

Comments

For positive integer m, the rote weight in gammas is g(m) = A062537(m), the rote height in gammas is h(m) = A109301(m) and the rote quench or primal code characteristic is q(m) = A108352(m).

Examples

			Primal Functions, Primal Codes, Sort Parameters and Subtotals
================================================================
Primal Function | ` ` ` Primal Code ` = ` a | g h q | r | s | t
================================================================
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 0 1 | 1 | 1 | 1
================================================================
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 1 0 | 1 | 1 | 1
================================================================
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 2 2 | ` | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 2 2 | 2 | 2 | 2
================================================================
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 6 | 3 2 0 | ` | ` |
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 9 | 3 2 0 | 2 | 2 |
----------------+---------------------------+-------+---+---+---
3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 3 2 | ` | ` |
4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 3 2 | ` | ` |
1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 3 2 | ` | ` |
1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `16 | 3 3 2 | 4 | 4 | 6
================================================================
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `12 | 4 2 0 | ` | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `18 | 4 2 0 | 2 | 2 |
----------------+---------------------------+-------+---+---+---
1:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `10 | 4 3 0 | ` | ` |
1:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `14 | 4 3 0 | 2 | ` |
----------------+---------------------------+-------+---+---+---
6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `13 | 4 3 2 | ` | ` |
9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `23 | 4 3 2 | ` | ` |
3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `25 | 4 3 2 | ` | ` |
2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `27 | 4 3 2 | ` | ` |
4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `49 | 4 3 2 | ` | ` |
1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `64 | 4 3 2 | ` | ` |
2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `81 | 4 3 2 | ` | ` |
1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 512 | 4 3 2 | 8 |10 |
----------------+---------------------------+-------+---+---+---
5:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `11 | 4 4 2 | ` | ` |
7:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `17 | 4 4 2 | ` | ` |
8:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `19 | 4 4 2 | ` | ` |
1:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `32 | 4 4 2 | ` | ` |
16:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `53 | 4 4 2 | ` | ` |
1:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 128 | 4 4 2 | ` | ` |
1:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 256 | 4 4 2 | ` | ` |
1:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 65536 | 4 4 2 | 8 | 8 |20
================================================================
a = this sequence
g = rote weight in gammas = A062537
h = rote height in gammas = A109301
q = primal code character = A108352
r = number in (g,h,q) set = A113198
s = count in (g, h) class = A111793
t = count in weight class = A061396
		

A112480 Positive integers sorted by rote weight, rote wagage and rote height.

Original entry on oeis.org

1, 2, 3, 4, 9, 5, 7, 8, 16, 6, 13, 23, 25, 27, 49, 64, 81, 512, 11, 17, 19, 32, 53, 128, 256, 65536, 12, 18, 10, 14, 37, 61, 125, 169, 343, 529, 625, 729, 2401, 4096, 19683, 262144, 29, 41, 43, 83, 97, 103, 121, 227, 243, 289, 311, 361, 419, 1024, 2187, 2809, 3671
Offset: 1

Author

Jon Awbrey, Sep 27 2005

Keywords

Comments

For positive integer m, the rote weight in gammas is g(m) = A062537(m), the rote wayage or root degree is w(m) = omega(m) = A001221(m) and the rote height in gammas is h(m) = A109301(m).

Examples

			Table of Primal Functions, Codes, Sort Parameters and Subtotals
================================================================
Primal Function | ` ` ` Primal Code ` = ` a | g w h | r | s | t
================================================================
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 0 0 | 1 | 1 | 1
================================================================
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 1 1 | 1 | 1 | 1
================================================================
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 1 2 | ` | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 1 2 | 2 | 2 | 2
================================================================
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 9 | 3 1 2 | 1 | ` |
----------------+---------------------------+-------+---+---+---
3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 1 3 | ` | ` |
4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 1 3 | ` | ` |
1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 1 3 | ` | ` |
1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `16 | 3 1 3 | 4 | 5 |
----------------+---------------------------+-------+---+---+---
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 6 | 3 2 2 | 1 | 1 | 6
================================================================
6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `13 | 4 1 3 | ` | ` |
9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `23 | 4 1 3 | ` | ` |
3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `25 | 4 1 3 | ` | ` |
2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `27 | 4 1 3 | ` | ` |
4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `49 | 4 1 3 | ` | ` |
1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `64 | 4 1 3 | ` | ` |
2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `81 | 4 1 3 | ` | ` |
1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 512 | 4 1 3 | 8 | ` |
----------------+---------------------------+-------+---+---+---
5:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `11 | 4 1 4 | ` | ` |
7:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `17 | 4 1 4 | ` | ` |
8:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `19 | 4 1 4 | ` | ` |
1:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `32 | 4 1 4 | ` | ` |
16:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `53 | 4 1 4 | ` | ` |
1:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 128 | 4 1 4 | ` | ` |
1:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 256 | 4 1 4 | ` | ` |
1:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 65536 | 4 1 4 | 8 |16 |
----------------+---------------------------+-------+---+---+---
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `12 | 4 2 2 | ` | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `18 | 4 2 2 | 2 | ` |
----------------+---------------------------+-------+---+---+---
1:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `10 | 4 2 3 | ` | ` |
1:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `14 | 4 2 3 | 2 | 4 |20
================================================================
12:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `37 | 5 1 3 | ` | ` |
18:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `61 | 5 1 3 | ` | ` |
3:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 125 | 5 1 3 | ` | ` |
6:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 169 | 5 1 3 | ` | ` |
4:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 343 | 5 1 3 | ` | ` |
9:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 529 | 5 1 3 | ` | ` |
3:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 625 | 5 1 3 | ` | ` |
2:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 729 | 5 1 3 | ` | ` |
4:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2401 | 5 1 3 | ` | ` |
1:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `4096 | 5 1 3 | ` | ` |
2:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 19683 | 5 1 3 | ` | ` |
1:18` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `262144 | 5 1 3 |12 | ` |
----------------+---------------------------+-------+---+---+---
10:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `29 | 5 1 4 | ` | ` |
13:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `41 | 5 1 4 | ` | ` |
14:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `43 | 5 1 4 | ` | ` |
23:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `83 | 5 1 4 | ` | ` |
25:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `97 | 5 1 4 | ` | ` |
27:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 103 | 5 1 4 | ` | ` |
5:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 121 | 5 1 4 | ` | ` |
49:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 227 | 5 1 4 | ` | ` |
2:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 243 | 5 1 4 | ` | ` |
7:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 289 | 5 1 4 | ` | ` |
64:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 311 | 5 1 4 | ` | ` |
8:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 361 | 5 1 4 | ` | ` |
81:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 419 | 5 1 4 | ` | ` |
1:10` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `1024 | 5 1 4 | ` | ` |
2:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2187 | 5 1 4 | ` | ` |
16:2` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2809 | 5 1 4 | ` | ` |
512:1 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `3671 | 5 1 4 | ` | ` |
2:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `6561 | 5 1 4 | ` | ` |
1:13` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `8192 | 5 1 4 | ` | ` |
1:14` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 16384 | 5 1 4 | ` | ` |
1:23` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` 8388608 | 5 1 4 | ` | ` |
1:25` ` ` ` ` ` | ` ` ` ` ` ` ` ` `33554432 | 5 1 4 | ` | ` |
2:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` `43046721 | 5 1 4 | ` | ` |
1:27` ` ` ` ` ` | ` ` ` ` ` ` ` ` 134217728 | 5 1 4 | ` | ` |
1:49` ` ` ` ` ` | ` ` ` ` ` 562949953421312 | 5 1 4 | ` | ` |
1:64` ` ` ` ` ` | ` ` `18446744073709551616 | 5 1 4 | ` | ` |
1:81` ` ` ` ` ` | 2417851639229258349412352 | 5 1 4 | ` | ` |
1:512 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 2^512 | 5 1 4 |28 | ` |
----------------+---------------------------+-------+---+---+---
11:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `31 | 5 1 5 | ` | ` |
17:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `59 | 5 1 5 | ` | ` |
19:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `67 | 5 1 5 | ` | ` |
32:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 131 | 5 1 5 | ` | ` |
53:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 241 | 5 1 5 | ` | ` |
128:1 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 719 | 5 1 5 | ` | ` |
256:1 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `1619 | 5 1 5 | ` | ` |
1:11` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2048 | 5 1 5 | ` | ` |
1:17` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `131072 | 5 1 5 | ` | ` |
1:19` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `524288 | 5 1 5 | ` | ` |
65536:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` `821641 | 5 1 5 | ` | ` |
1:32` ` ` ` ` ` | ` ` ` ` ` ` ` `4294967296 | 5 1 5 | ` | ` |
1:53` ` ` ` ` ` | ` ` ` ` `9007199254740992 | 5 1 5 | ` | ` |
1:128 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 2^128 | 5 1 5 | ` | ` |
1:256 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 2^256 | 5 1 5 | ` | ` |
1:65536 ` ` ` ` | ` ` ` ` ` ` ` ` ` 2^65536 | 5 1 5 |16 |56 |
----------------+---------------------------+-------+---+---+---
1:2 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `36 | 5 2 2 | 1 | ` |
----------------+---------------------------+-------+---+---+---
2:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `15 | 5 2 3 | ` | ` |
1:2 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `20 | 5 2 3 | ` | ` |
2:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `21 | 5 2 3 | ` | ` |
1:3 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `24 | 5 2 3 | ` | ` |
1:1 6:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `26 | 5 2 3 | ` | ` |
1:2 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `28 | 5 2 3 | ` | ` |
1:1 9:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `46 | 5 2 3 | ` | ` |
1:4 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `48 | 5 2 3 | ` | ` |
1:1 3:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `50 | 5 2 3 | ` | ` |
1:1 2:3 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `54 | 5 2 3 | ` | ` |
1:1 4:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `98 | 5 2 3 | ` | ` |
1:1 2:4 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 162 | 5 2 3 |12 | ` |
----------------+---------------------------+-------+---+---+---
1:1 5:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `22 | 5 2 4 | ` | ` |
1:1 7:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `34 | 5 2 4 | ` | ` |
1:1 8:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `38 | 5 2 4 | ` | ` |
1:1 16:1` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 106 | 5 2 4 | 4 |17 |73
================================================================
a = this sequence
g = rote weight in gammas = A062537
w = rote wayage in gammas = A001221
h = rote height in gammas = A109301
r = number in (g,h,w) set = A112481
s = count in (g, w) class = A111797
t = count in weight class = A061396
		

A112481 Tetrahedron T(g, w, h) = number of rotes of weight g, wayage w, height h.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 8, 8, 2, 2, 12, 28, 16, 1, 12, 4
Offset: 1

Author

Jon Awbrey, Sep 27 2005

Keywords

Comments

T(g, w, h) = |{m : A062537(m) = g, A001221(m) = w, A109301(m) = h}|.
This is the column that is labeled "r" in the tabulation of A112480.
a(n) is a permutation of the elements in A112096.
g = h > 0 implies w = 1 and T(j, 1, j) = 2^(j-1) = A000079(j-1).

Examples

			Table T(g, w, h), omitting empty cells, starts out as follows:
--------+-------------------------------------------------------
g\(w,h) | (0,0) (1,1) (1,2) ` ` ` (1,3) ` ` ` (1,4) ` ` ` (1,5)
` ` ` ` | ` ` ` ` ` ` ` ` ` (2,2) ` ` ` (2,3) ` ` ` (2,4) ` ` `
========+=======================================================
0 ` ` ` | ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+-------------------------------------------------------
1 ` ` ` | ` ` ` ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+-------------------------------------------------------
2 ` ` ` | ` ` ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+-------------------------------------------------------
3 ` ` ` | ` ` ` ` ` ` ` 1 ` ` ` ` ` 4 ` ` ` ` ` ` ` ` ` ` ` ` `
3 ` ` ` | ` ` ` ` ` ` ` ` ` ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+-------------------------------------------------------
4 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` 8 ` ` ` ` ` 8 ` ` ` ` ` ` `
4 ` ` ` | ` ` ` ` ` ` ` ` ` ` 2 ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` `
--------+-------------------------------------------------------
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` `12 ` ` ` ` `28 ` ` ` ` `16 `
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` 1 ` ` ` ` `12 ` ` ` ` ` 4 ` ` ` `
--------+-------------------------------------------------------
Row sums = A111797. Horizontal section sums = A061396.
		

A112870 Positive integers sorted by rote height and primal code characteristic.

Original entry on oeis.org

1, 2, 6, 9, 12, 18, 36, 3, 4
Offset: 1

Author

Jon Awbrey, Oct 14 2005

Keywords

Comments

Positive integers m sorted by h(m) = A109301(m) and q(m) = A108352(m).
Using "quench" as a shorter substitute for "primal code characteristic", the rote corresponding to the positive integer m has a quench of q(m) = A108352(m). Numbers with primal code characteristic 0 are "unquenchable".

Examples

			Primal Function | Primal Code = a | h q | s | t
----------------+-----------------+-----+---+---
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` 1 | 0 1 | 1 | 1
----------------+-----------------+-----+---+---
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` 2 | 1 0 | 1 | 1
----------------+-----------------+-----+---+---
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` 6 | 2 0 | ` |
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` 9 | 2 0 | ` |
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` `12 | 2 0 | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` `18 | 2 0 | ` |
1:2 2:2 ` ` ` ` | ` ` ` ` ` ` `36 | 2 0 | 5 |
----------------+-----------------+-----+---+---
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` 3 | 2 2 | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` 4 | 2 2 | 2 | 7
----------------+-----------------+-----+---+---
a = this sequence
h = rote height in gammas = A109301
q = primal code character = A108352
s = count in (h, q) class = A112871
t = count in height class = A109300
		

A113198 Tetrahedron T(g, h, q) = number of rotes of weight g, height h, quench q.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 2, 8, 8, 1, 8, 12, 4, 4, 28, 16
Offset: 1

Author

Jon Awbrey, Oct 18 2005

Keywords

Comments

T(g, h, q) = |{m : A062537(m) = g, A109301(m) = h, A108352(m) = q}|.
This is the column that is labeled "r" in the tabulation of A113197.

Examples

			Table T(g, h, q), omitting empty cells, starts out as follows:
--------+------------------------------------------------------------
g\(h,q) | (0,1) ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
` ` ` ` | ` ` ` (1,0) ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
` ` ` ` | ` ` ` ` ` ` (2,0) (2,2) ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` (3,0) (3,2) (3,3) ` ` ` ` ` ` ` ` `
` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` (4,0) (4,2) ` ` `
` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` (5,2)
========+============================================================
0 ` ` ` | ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
1 ` ` ` | ` ` ` ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
2 ` ` ` | ` ` ` ` ` ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
3 ` ` ` | ` ` ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
3 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 4 ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
4 ` ` ` | ` ` ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
4 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` 2 ` ` 8 ` ` ` ` ` ` ` ` ` ` ` ` `
4 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 8 ` ` ` `
--------+------------------------------------------------------------
5 ` ` ` | ` ` ` ` ` ` ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` 8 ` `12 ` ` 4 ` ` ` ` ` ` ` ` ` `
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 4 ` `28 ` ` ` `
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `16 `
--------+------------------------------------------------------------
Row sums = A111793. Horizontal section sums = A061396.
		

A113200 Tetrahedron T(g, q, h) = number of rotes of weight g, quench q, height h.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 2, 8, 8, 1, 8, 4, 12, 28, 16, 4
Offset: 1

Author

Jon Awbrey, Oct 18 2005

Keywords

Comments

T(g, q, h) = |{m : A062537(m) = g, A108352(m) = q, A109301(m) = h}|.
This is the column that is labeled "r" in the tabulation of A113199.
a(n) is a permutation of the elements in A113198.

Examples

			Table T(g, q, h), omitting empty cells, starts out as follows:
--------+------------------------------------------------------------
g\(q,h) | (1,0) (0,1) (0,2) ` ` ` (0,3) ` ` ` ` ` ` (0,4) ` ` ` ` ` `
` ` ` ` | ` ` ` ` ` ` ` ` ` (2,2) ` ` ` (2,3) ` ` ` ` ` ` (2,4) (2,5)
` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` (3,3) ` ` ` ` ` ` ` ` `
========+============================================================
0 ` ` ` | ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
1 ` ` ` | ` ` ` ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
2 ` ` ` | ` ` ` ` ` ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
3 ` ` ` | ` ` ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
3 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 4 ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
4 ` ` ` | ` ` ` ` ` ` ` 2 ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
4 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 8 ` ` ` ` ` ` ` ` 8 ` ` ` `
--------+------------------------------------------------------------
5 ` ` ` | ` ` ` ` ` ` ` 1 ` ` ` ` ` 8 ` ` ` ` ` ` ` ` 4 ` ` ` ` ` ` `
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `12 ` ` ` ` ` ` ` `28 ` `16 `
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 4 ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
Row sums = A112869. Horizontal section sums = A061396.
		

A112872 First differences of A061396.

Original entry on oeis.org

0, 1, 4, 14, 53, 208, 843, 3494, 14769, 63378, 275480, 1210213, 5365307, 23973429, 107853409, 488137798, 2221048540, 10153825751, 46617145752, 214844862927, 993601026038, 4609693262811, 21448031058110, 100058764135997
Offset: 0

Author

Jon Awbrey, Oct 24 2005, based on calculations by Vladeta Jovovic & David W. Wilson

Keywords