A253139 a(n) = lcm_{d|n} tau(d), where tau(d) represents the number of divisors of d (A000005(d)).
1, 2, 2, 6, 2, 4, 2, 12, 6, 4, 2, 12, 2, 4, 4, 60, 2, 12, 2, 12, 4, 4, 2, 24, 6, 4, 12, 12, 2, 8, 2, 60, 4, 4, 4, 36, 2, 4, 4, 24, 2, 8, 2, 12, 12, 4, 2, 120, 6, 12, 4, 12, 2, 24, 4, 24, 4, 4, 2, 24, 2, 4, 12, 420, 4, 8, 2, 12, 4, 8, 2, 72, 2, 4, 12, 12, 4, 8
Offset: 1
Examples
The divisors of 20 are 1, 2, 4, 5, 10 and 20, which have 1, 2, 3, 2, 4 and 6 divisors respectively. The least common multiple of 1, 2, 3, 2, 4 and 6 is 12; therefore, a(20) = 12.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Morgan Ward, A note on divisibility sequences, Bull. Amer. Math. Soc., 45 (1939), 334-336.
Crossrefs
Programs
-
Mathematica
Table[LCM@@DivisorSigma[0,Divisors[n]],{n,100}] (* Harvey P. Dale, Sep 01 2017 *) lcm[n_] := lcm[n] = LCM @@ Range[n]; a[1] = 1; a[n_] := Times @@ (lcm [Last[#] + 1] & /@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
-
PARI
a(n) = my(d = divisors(n)); lcm(vector(#d, k, numdiv(d[k]))); \\ Michel Marcus, Jan 23 2015
Comments