cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A334470 a(n) = Product_{d|n} (A253139(n) / tau(d)) where A253139(n) = lcm_{d|n} tau(d).

Original entry on oeis.org

1, 2, 2, 36, 2, 16, 2, 864, 36, 16, 2, 10368, 2, 16, 16, 6480000, 2, 10368, 2, 10368, 16, 16, 2, 11943936, 36, 16, 864, 10368, 2, 4096, 2, 64800000, 16, 16, 16, 2176782336, 2, 16, 16, 11943936, 2, 4096, 2, 10368, 10368, 16, 2, 1343692800000000, 36, 10368, 16
Offset: 1

Views

Author

Jaroslav Krizek, May 01 2020

Keywords

Examples

			For n = 6; divisors d of 6: {1, 2, 3, 6}; tau(d): {1, 2, 2, 4}; lcm_{d|6} tau(d) = 4; a(6) = 4/1 * 4/2 * 4/2 * 4/4 = 16.
		

Crossrefs

Cf. A334471 (similar sequence with sigma(d)).

Programs

  • Magma
    [&*[ LCM([#Divisors(d): d in Divisors(n)]) / #Divisors(d): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := (LCM @@ (s = DivisorSigma[0, Divisors[n]]))^Length[s] / Times @@ s; Array[a, 51] (* Amiram Eldar, May 02 2020 *)
  • PARI
    a(n) = {my(d=divisors(n), lcmd = lcm(vector(#d, k, numdiv(d[k])))); vecprod(vector(#d, k, lcmd/numdiv(d[k])));} \\ Michel Marcus, May 02 2020

Formula

a(n) = ((lcm_{d|n} tau(d))^tau(n)) / Product_{d|n} tau(d).
a(n) = A253139(n)^A000005(n) / A211776(n).
a(p) = 2 for p = primes (A000040).
a(n) = 2^(k*2^(k-1)) if n is a product of k distinct primes.

A069934 a(n) = lcm_{d|n} sigma(d).

Original entry on oeis.org

1, 3, 4, 21, 6, 12, 8, 105, 52, 18, 12, 84, 14, 24, 24, 3255, 18, 156, 20, 126, 32, 36, 24, 420, 186, 42, 520, 168, 30, 72, 32, 9765, 48, 54, 48, 1092, 38, 60, 56, 630, 42, 96, 44, 252, 312, 72, 48, 13020, 456, 558, 72, 294, 54, 1560, 72, 840, 80, 90, 60, 504, 62, 96
Offset: 1

Views

Author

Vladeta Jovovic, Apr 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[LCM@@(DivisorSigma[1,#]&/@Divisors[n]),{n,70}] (* Harvey P. Dale, Feb 22 2023 *)
  • PARI
    A069934(n) = my(d = divisors(n)); lcm(vector(#d, k, sigma(d[k]))); \\ Antti Karttunen, Sep 10 2017

Formula

Multiplicative with a(p^e) = Product_{k=2..e+1} Phi_k(p), where Phi_k(x) is k-th cyclotomic polynomial.

A265391 a(n) = numerator of Sum_{d|n} 1 / tau(d).

Original entry on oeis.org

1, 3, 3, 11, 3, 9, 3, 25, 11, 9, 3, 11, 3, 9, 9, 137, 3, 11, 3, 11, 9, 9, 3, 25, 11, 9, 25, 11, 3, 27, 3, 49, 9, 9, 9, 121, 3, 9, 9, 25, 3, 27, 3, 11, 11, 9, 3, 137, 11, 11, 9, 11, 3, 25, 9, 25, 9, 9, 3, 33, 3, 9, 11, 363, 9, 27, 3, 11, 9, 27, 3, 275, 3, 9, 11
Offset: 1

Views

Author

Jaroslav Krizek, Dec 08 2015

Keywords

Comments

a(n) = numerator of Sum_{d|n} 1 / A000005(d).

Examples

			For n = 6; divisors d of 6: {1, 2, 3, 6}; tau(d): {1, 2, 2, 4}; Sum_{d|6} 1 / tau(d) = 1/1 + 1/2 + 1/2 + 1/4 = 9 / 4; a(n) = 9 (numerator).
		

Crossrefs

Cf. A000005, A253139, A265390, A265392 (denominator), A265393.

Programs

  • Magma
    [Numerator(&+[1/NumberOfDivisors(d): d in Divisors(n)]): n in [1..100]]
    
  • Mathematica
    Table[Numerator[Sum[1/DivisorSigma[0, d], {d, Divisors@ n}]], {n, 75}] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    a(n) = numerator(sumdiv(n, d, 1/numdiv(d))); \\ Michel Marcus, Dec 09 2015

Formula

a(n) = [Sum_{d|n} 1 / tau(d)] * A265392(n) = A265390(n) * A265392(n) / A253139(n).
a(1) = 1; a(p) = 3 for p = prime.

A265392 a(n) = denominator of Sum_{d|n} 1 / tau(d).

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 12, 6, 4, 2, 4, 2, 4, 4, 60, 2, 4, 2, 4, 4, 4, 2, 8, 6, 4, 12, 4, 2, 8, 2, 20, 4, 4, 4, 36, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 40, 6, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 140, 4, 8, 2, 4, 4, 8, 2, 72, 2, 4, 4, 4, 4, 8, 2, 40, 60, 4, 2
Offset: 1

Views

Author

Jaroslav Krizek, Dec 08 2015

Keywords

Comments

a(n) = denominator of Sum_{d|n} 1 / A000005(d).

Examples

			For n = 6; divisors d of 6: {1, 2, 3, 6}; tau(d): {1, 2, 2, 4}; Sum_{d|6} 1 / tau(d) = 1/1 + 1/2 + 1/2 + 1/4 = 9 / 4; a(n) = 4 (denominator).
		

Crossrefs

Programs

  • Magma
    [Denominator(&+[1/NumberOfDivisors(d): d in Divisors(n)]): n in [1..1000]]
    
  • Mathematica
    Table[Denominator[Sum[1/DivisorSigma[0, d], {d, Divisors@ n}]], {n, 83}] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    a(n) = denominator(sumdiv(n, d, 1/numdiv(d))); \\ Michel Marcus, Dec 09 2015

Formula

a(n) = A265391(n) / [Sum_{d|n} 1 / tau(d)] = A265391(n) * A253139(n) / A265390(n).
a(1) = 1; a(p) = 2 for p = prime; a(n) = n for numbers 1, 2, 36, 72, ...

A265390 a(n) = lcm_{d|n} tau(d) * Sum_{d|n} 1/tau(d), where tau(d) represents the number of divisors of d (A000005(d)).

Original entry on oeis.org

1, 3, 3, 11, 3, 9, 3, 25, 11, 9, 3, 33, 3, 9, 9, 137, 3, 33, 3, 33, 9, 9, 3, 75, 11, 9, 25, 33, 3, 27, 3, 147, 9, 9, 9, 121, 3, 9, 9, 75, 3, 27, 3, 33, 33, 9, 3, 411, 11, 33, 9, 33, 3, 75, 9, 75, 9, 9, 3, 99, 3, 9, 33, 1089, 9, 27, 3, 33, 9, 27, 3, 275, 3, 9, 33, 33, 9, 27, 3, 411, 137, 9, 3, 99, 9, 9, 9, 75, 3, 99, 9, 33
Offset: 1

Views

Author

Jaroslav Krizek, Dec 08 2015

Keywords

Examples

			For n = 6; divisors d of 6: {1, 2, 3, 6}; tau(d): {1, 2, 2, 4}; LCM_{d|6} tau(d) = 4; a(6) = 4/1 + 4/2 + 4/2 + 4/4 = 9.
		

Crossrefs

Programs

  • Magma
    [&+[LCM([NumberOfDivisors(d): d in Divisors(n)]) / NumberOfDivisors(d): d in Divisors(n) ]: n in [1..100]]
    
  • Mathematica
    Table[LCM @@ DivisorSigma[0, Divisors@ n] Sum[1/DivisorSigma[0, d], {d, Divisors@ n}], {n, 74}] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    A253139(n) = my(d = divisors(n)); lcm(vector(#d, k, numdiv(d[k]))); \\ This function from Michel Marcus, Jan 23 2015
    A265390(n) = (A253139(n) * sumdiv(n,d,(1/numdiv(d)))); \\ Antti Karttunen, Nov 24 2017

Formula

a(n) = A253139(n) * Sum_{d|n} 1/A000005(d) = A265391(n) * A253139(n) / A265392(n).
Multiplicative with a(p^e) = A025529(e+1) = (1/1 + 1/2 + 1/3 + ... + 1/(e+1)) * lcm{1, 2, 3, ..., e+1}.

Extensions

More terms from Antti Karttunen, Nov 24 2017

A265393 a(n) = the smallest number k such that floor(Sum_{d|k} 1/tau(d)) = n.

Original entry on oeis.org

1, 6, 24, 60, 180, 420, 840, 2520, 4620, 9240, 13860, 27720, 60060, 55440, 110880, 166320, 180180, 480480, 360360, 900900, 720720, 1441440, 1801800, 2162160, 3063060, 4084080, 7207200, 12612600, 6126120, 27027000, 12252240, 18378360, 43243200, 24504480
Offset: 1

Views

Author

Jaroslav Krizek, Dec 08 2015

Keywords

Comments

Further known terms: a(29) = 6126120, a(31) = 12252240.
Are there numbers n > 1 such that Sum_{d|n} 1/tau(d) is an integer?
Sequences of numbers n such that floor(Sum_{d|n} 1/tau(d)) = k for k = 1..6:
k=1: 1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, ... (A166684);
k=2: 6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, ...;
k=3: 24, 30, 36, 40, 42, 48, 54, 56, 66, 70, 72, 78, 80, 88, 96, 100, ...;
k=4: 60, 84, 90, 120, 126, 132, 140, 144, 150, 156, 168, 198, 204, 216, ...;
k=5: 180, 210, 240, 252, 300, 330, 336, 360, 390, 396, 450, 462, 468, ...;
k=6: 420, 630, 660, 720, 780, 900, 924, 990, 1008, 1020, 1050, 1080, ....
Values of function F = Sum_{d|n} 1/tau(d) for some numbers according to their prime signature: F{} = 1; F{1} = 3/2; F{2} = 11/6; F{1, 1} = 9/4; F{3} = 25/12; F{2, 1} = 11/4; F{4} = 137/60; F{3, 1} = 25/8, ...

Examples

			For n = 2; a(2) = 6 because 6 is the smallest number with floor(Sum_{d|6} 1/tau(d)) = floor(1/1 + 1/2 + 1/2 + 1/4) = floor(9/4) = 2.
		

Crossrefs

Cf. A237350 (a(n) = the smallest number k such that Sum_{d|k} 1/tau(d) >= n).

Programs

  • Magma
    a:=1; S:=[a]; for n in [2..14] do k:=0; flag:= true; while flag do k+:=1; if Floor(&+[1/NumberOfDivisors(d): d in Divisors(k)]) eq n then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
    
  • Mathematica
    Table[k = 1; While[Floor@ Sum[1/DivisorSigma[0, d], {d, Divisors@ k}] != n, k++]; k, {n, 17}] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    a(n) = {k=1; while(k, if(floor(sumdiv(k, d, 1/numdiv(d))) == n, return(k)); k++)} \\ Altug Alkan, Dec 09 2015

Extensions

More terms from Michel Marcus, Dec 23 2015
a(33)-a(34) from Hiroaki Yamanouchi, Dec 31 2015

A237350 a(n) = the smallest number k such that Sum_{d|k} 1/tau(d) >= n.

Original entry on oeis.org

1, 6, 24, 60, 180, 420, 840, 2520, 4620, 9240, 13860, 27720, 55440, 55440, 110880, 166320, 180180, 360360, 360360, 720720, 720720, 1441440, 1801800, 2162160, 3063060, 4084080, 6126120, 6126120, 6126120, 12252240, 12252240, 18378360, 24504480, 24504480, 30630600, 36756720
Offset: 1

Views

Author

Jaroslav Krizek, Dec 13 2015

Keywords

Comments

Are there numbers n > 1 such that Sum_{d|n} 1/tau(d) is an integer?
Values of function F = Sum_{d|n} 1/tau(d) for some numbers according to their prime signature: F{} = 1; F{1} = 3/2; F{2} = 11/6; F{1, 1} = 9/4; F{3} = 25/12; F{2, 1} = 11/4; F{4} = 137/60; F{3, 1} = 25/8, ...
All terms are of the form Product_{j=1..k} prime(j)^e(j) where e(j+1)<= e(j), and thus products of (not necessarily distinct) primorials. - Robert Israel, Dec 21 2015
From David A. Corneth, Nov 05 2019: (Start)
Instead of checking all divisors of A025487(n), one could use A318277 to see how often each prime signature occurs as a divisor.
Knowing the lcm of the terms below some m drastically improves the possibility of finding terms. In hindsight, knowing the lcm of the terms below 10^25 yields having to consider 1056 terms of A025487 instead of 222124. Is there some way to accurately predict the lcm to improve computation? (End)

Examples

			For n = 2; a(2) = 6 because 6 is the smallest number with Sum_{d|6} 1/tau(d) = 1/1 + 1/2 + 1/2 + 1/4 = 9/4 >= 2.
		

Crossrefs

Cf. A265393 (a(n) = the smallest number k such that floor(Sum_{d|k} 1/tau(d)) = n).

Programs

  • Magma
    a:=1; S:=[a]; for n in [2..14] do k:=0; flag:= true; while flag do k+:=1; if &+[1/NumberOfDivisors(d): d in Divisors(k)] gt n then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
    
  • Maple
    N:= 10^9: # to get all entries <= N
    Primorials:= NULL:
    p:= 2: P:= p:
    while P <= N do
      Primorials:= Primorials, P;
      p:= nextprime(p);
      P:= P*p;
    od:
    Primorials:= [Primorials]:
    S:= {1}:
    for i from 1 to nops(Primorials) do
      S:= {seq(seq(s*Primorials[i]^j,
           j = 0 .. floor(log[Primorials[i]](N/s))),s=S)}
    od:
    A:= NULL:
    S:= sort(convert(S,list)):
    xmax:= 0:
    for s in S do
      x:= floor(add(1/numtheory:-tau(d),d=numtheory:-divisors(s)));
      if x > xmax then
         A:= A, s$(x-xmax);
         xmax:= x
      fi
    od:
    A; # Robert Israel, Dec 21 2015
  • Mathematica
    s[1] = 1; s[n_] := DivisorSum[n, 1/DivisorSigma[0, #] &]; n = 1; k = 1; seq = {}; Do[While[s[k] < n, k++]; AppendTo[seq, k]; n++, {j, 1, 20}]; seq (* Amiram Eldar, Jan 30 2019 *)
  • PARI
    a(n) = {my(k=1); while(sumdiv(k, d, 1/numdiv(d)) < n, k++); k;} \\ Michel Marcus, Dec 20 2015

Extensions

a(24)-a(30) from Michel Marcus, Dec 20 2015
a(31)-a(35) from Robert Israel, Dec 21 2015
Missing a(31) = 12252240 inserted in data section by Georg Fischer, Nov 05 2019

A250270 Products of terms of A003418.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 192, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 960, 1024, 1152, 1296, 1440, 1536, 1680, 1728, 1920, 2048, 2160, 2304, 2520, 2592, 2880, 3072, 3360, 3456
Offset: 1

Views

Author

Matthew Vandermast, Dec 16 2014

Keywords

Comments

Includes all factorials and Jordan-Polya numbers, since n! = Product_{i = 1..n} A003418(floor(n/i)) for positive n.

Examples

			720 = 2*6*60 = 12*60. Since 2, 6, 12 and 60 are all terms of A003418, 720 is a term of this sequence.
		

Crossrefs

Range of values of A253139. Subsequences include A000142, A001013, A001813, A025527, A064350, A166338, A250569.
Subsequence of A025487.

Programs

  • PARI
    f(n) = lcm(vector(n, i, i)); \\ A003418
    mul(x,y) = x*y;
    lista(nn) = {my(v = vector(nn, k, f(k)), lim = f(nn+1), ok = 0, nv); while (!ok,  nv = select(x->(xMichel Marcus, May 09 2021

A253141 If n is a prime power, then a(n) = lambda(tau(n)) = A014963(A000005(n)); otherwise, a(n) = 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 1, 5, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 7, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 5, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Matthew Vandermast, Dec 27 2014

Keywords

Comments

For any integer sequence a, the sequence b such that b(n) = Product_{d|n} a(d) is a divisibility sequence. Since A253139(n) = Product_{d|n} a(d), A253139 is a divisibility sequence.
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

Examples

			2 is a prime number, i.e., a prime power with 2 divisors; a(2) = A014963(2) = 2.
6 = 2*3 is not a prime power; a(6) = 1.
8 = 2^3 is a prime power with 4 divisors; a(8) = A014963(4) = 2.
32 = 2^5 is a prime power with 6 divisors; a(32) = A014963(6) = 1.
		

Crossrefs

Programs

A266226 a(n) = floor(Sum_{d|n} 1 / tau(d)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3
Offset: 1

Views

Author

Jaroslav Krizek, Dec 24 2015

Keywords

Comments

a(n) = floor(Sum_{d|n} 1 / A000005(d)).
Sequences of numbers n such that floor(Sum_{d|n} 1/tau(d)) = k for k = 1..6:
k=1: 1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, ... (A166684);
k=2: 6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, ...;
k=3: 24, 30, 36, 40, 42, 48, 54, 56, 66, 70, 72, 78, 80, 88, 96, 100, ...;
k=4: 60, 84, 90, 120, 126, 132, 140, 144, 150, 156, 168, 198, 204, 216, ...;
k=5: 180, 210, 240, 252, 300, 330, 336, 360, 390, 396, 450, 462, 468, ...;
k=6: 420, 630, 660, 720, 780, 900, 924, 990, 1008, 1020, 1050, 1080, ....
See A265393 - the smallest number n such that a(n) = k for k>= 1.

Examples

			For n = 6; a(6) = floor(Sum_{d|6} 1/tau(d)) = floor(1/1 + 1/2 + 1/2 + 1/4) = floor(9/4) = 2.
		

Crossrefs

Programs

  • Magma
    [Floor(&+[1/NumberOfDivisors(d): d in Divisors(n)]): n in [1..100]];
  • Mathematica
    Table[Floor[Sum[1/DivisorSigma[0, d], {d, Divisors[ n]}]], {n, 1, 100}] (* G. C. Greubel, Dec 24 2015 *)
Showing 1-10 of 11 results. Next