cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A334471 a(n) = Product_{d|n} (A069934(n) / sigma(d)) where A069934(n) = lcm_{d|n} sigma(d).

Original entry on oeis.org

1, 3, 4, 441, 6, 144, 8, 385875, 2704, 324, 12, 12446784, 14, 576, 576, 37418184916875, 18, 197413632, 20, 42007896, 1024, 1296, 24, 38118276000000, 34596, 1764, 35152000, 99574272, 30, 26873856, 32, 1409355934894096875, 2304, 2916, 2304, 1695648500686393344
Offset: 1

Views

Author

Jaroslav Krizek, May 01 2020

Keywords

Examples

			For n = 6; divisors d of 6: {1, 2, 3, 6}; sigma(d): {1, 3, 4, 12}; lcm_{d|6} sigma(d) = 12; a(6) = 12/1 * 12/3 * 12/4 * 12/12 = 144.
		

Crossrefs

Cf. Similar sequence with tau(d): A334470.

Programs

  • Magma
    [&*[ LCM([&+Divisors(d): d in Divisors(n)]) / &+Divisors(d): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := (LCM @@ (s = DivisorSigma[1, Divisors[n]]))^Length[s] / Times @@ s; Array[a, 36] (* Amiram Eldar, May 02 2020 *)
  • PARI
    a(n) = {my(d=divisors(n), lcms = lcm(vector(#d, k, sigma(d[k])))); vecprod(vector(#d, k, lcms/sigma(d[k])));} \\ Michel Marcus, May 02 2020

Formula

a(n) = ((lcm_{d|n} sigma(d))^tau(n)) / Product_{d|n} (sigma(d)).
a(n) = A069934(n)^A000005(n) / A206032(n).
a(p) = p + 1 for p = primes (A000040).

A334489 a(n) = Product_{d|n} (pod(n)/pod(d)) where pod(n) = A007955(n), the product of divisors of n.

Original entry on oeis.org

1, 2, 3, 32, 5, 7776, 7, 16384, 243, 100000, 11, 8916100448256, 13, 537824, 759375, 1073741824, 17, 1156831381426176, 19, 4096000000000000, 4084101, 5153632, 23, 2315513501476187716057433112576, 3125, 11881376, 4782969, 232218265089212416, 29
Offset: 1

Views

Author

Jaroslav Krizek, May 03 2020

Keywords

Examples

			For n = 6; divisors d of 6: {1, 2, 3, 6}; pod(d): {1, 2, 3, 36}; lcm_{d|6} pod(d) = pod(6) = 36; a(6) = 36/1 * 36/2 * 36/3 * 36/36 = 7776.
		

Crossrefs

Cf. Similar sequences for functions lcm_{d|n} tau(d) and lcm_{d|n} sigma(d): A334470, A334471.

Programs

  • Magma
    [&*[ LCM([&*Divisors(d): d in Divisors(n)]) / &*Divisors(d): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    pod[n_] := Times @@ Divisors[n]; a[n_] := pod[n]^Length[(d = Divisors[n])]/Times @@ (pod /@ d); Array[a, 30] (* Amiram Eldar, May 03 2020 *)
  • PARI
    pod(n) = vecprod(divisors(n));
    a(n) = my(d=divisors(n), podn = pod(n)); prod(k=1, #d, podn/pod(d[k])); \\ Michel Marcus, May 03-11 2020

Formula

a(p) = p for p = primes (A000040).
a(n) = ((lcm_{d|n} pod(d))^tau(n)) / Product_{d|n} (pod(d)) = A007955(n)^A000005(n)/A266265(n).
a(n) = n^c(n) where c(n) only depends on the prime signature of n. - David A. Corneth, May 05 2020
Showing 1-2 of 2 results.