cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A253139 a(n) = lcm_{d|n} tau(d), where tau(d) represents the number of divisors of d (A000005(d)).

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 12, 6, 4, 2, 12, 2, 4, 4, 60, 2, 12, 2, 12, 4, 4, 2, 24, 6, 4, 12, 12, 2, 8, 2, 60, 4, 4, 4, 36, 2, 4, 4, 24, 2, 8, 2, 12, 12, 4, 2, 120, 6, 12, 4, 12, 2, 24, 4, 24, 4, 4, 2, 24, 2, 4, 12, 420, 4, 8, 2, 12, 4, 8, 2, 72, 2, 4, 12, 12, 4, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 27 2014

Keywords

Comments

A divisibility sequence (cf. Ward link and second formula).
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

Examples

			The divisors of 20 are 1, 2, 4, 5, 10 and 20, which have 1, 2, 3, 2, 4 and 6 divisors respectively. The least common multiple of 1, 2, 3, 2, 4 and 6 is 12; therefore, a(20) = 12.
		

Crossrefs

A250270 gives range of values. A141586 lists numbers n such that a(n) divides n.

Programs

  • Mathematica
    Table[LCM@@DivisorSigma[0,Divisors[n]],{n,100}] (* Harvey P. Dale, Sep 01 2017 *)
    lcm[n_] := lcm[n] = LCM @@ Range[n]; a[1] = 1; a[n_] := Times @@ (lcm [Last[#] + 1] & /@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
  • PARI
    a(n) = my(d = divisors(n)); lcm(vector(#d, k, numdiv(d[k]))); \\ Michel Marcus, Jan 23 2015

Formula

If n = Product_ prime(i)^e(i), then a(n) = Product_ A003418(e(i)+1).
a(n) = Product_{d|n} A253141(d).

A250269 Primitive part of n! (for n>=1): n! = Product_{d|n} a(d).

Original entry on oeis.org

1, 2, 6, 12, 120, 60, 5040, 1680, 60480, 15120, 39916800, 55440, 6227020800, 8648640, 1816214400, 518918400, 355687428096000, 147026880, 121645100408832000, 55870214400, 1689515283456000, 14079294028800, 25852016738884976640000, 771008958720
Offset: 1

Views

Author

Matthew Vandermast, Dec 16 2014

Keywords

Comments

The title is analogous to the title of A061446.
For any integer sequence a, the sequence b such that b(n) = Product_{d|n} a(d) is a divisibility sequence. Not every divisibility sequence b corresponds to some integer sequence a such that b(n) = Product_{d|n} a(d), however.
This sequence is not itself a divisibility sequence; a(15) does not divide a(30), for example.

Examples

			The divisors of 10 are 1, 2, 5 and 10. 10! = a(1) * a(2) * a(5) * a(10) = 1 * 2 * 120 * 15120 = 3628800.
Between 1 and 10 inclusive, 4 integers are coprime to 10: 1, 3, 7 and 9. Let b(n) = lcm (1...n) = A003418(n), and let [x] denote the floor function. Then:
a(10) = b[10/1] * b[10/3] * b[10/7] * b[10/9]
"   "   = b(10) * b(3) * b(1) * b(1)
"   "   = 2520 * 6 * 1 * 1
"   "   = 15120.
		

Crossrefs

Cf. A000142, A075071. Subsequence of A250270.
Cf. A000010 (comments on product formulas), A008683.

Programs

  • Mathematica
    Array[Product[(d!)^MoebiusMu[#/d], {d, Divisors[#]}] &, 24] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    a(n)={my(r=1);fordiv(n,d,r*=d!^moebius(n/d));r} \\ Joerg Arndt, Jan 18 2015

Formula

a(n) = Product_{i = 1..n, gcd(n, i) = 1} lcm (1..floor(n/i)).
a(n) = Product_{i = 1..floor(n/2), gcd(n, i) = 1} lcm (1..floor(n/i)) (equivalent formula).
a(n) = n! iff n is prime.
a(n) = Product_{d|n} (d!)^moebius(n/d). - Joerg Arndt, Jan 18 2015
a(n) = Product_{k=1..n} (gcd(n,k)!)^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} ((n/gcd(n,k))!)^(mu(gcd(n,k))/phi(n/gcd(n,k))) where mu = A008683, phi = A000010. - Richard L. Ollerton, Nov 08 2021
Showing 1-3 of 3 results.