cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A265392 a(n) = denominator of Sum_{d|n} 1 / tau(d).

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 12, 6, 4, 2, 4, 2, 4, 4, 60, 2, 4, 2, 4, 4, 4, 2, 8, 6, 4, 12, 4, 2, 8, 2, 20, 4, 4, 4, 36, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 40, 6, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 140, 4, 8, 2, 4, 4, 8, 2, 72, 2, 4, 4, 4, 4, 8, 2, 40, 60, 4, 2
Offset: 1

Views

Author

Jaroslav Krizek, Dec 08 2015

Keywords

Comments

a(n) = denominator of Sum_{d|n} 1 / A000005(d).

Examples

			For n = 6; divisors d of 6: {1, 2, 3, 6}; tau(d): {1, 2, 2, 4}; Sum_{d|6} 1 / tau(d) = 1/1 + 1/2 + 1/2 + 1/4 = 9 / 4; a(n) = 4 (denominator).
		

Crossrefs

Programs

  • Magma
    [Denominator(&+[1/NumberOfDivisors(d): d in Divisors(n)]): n in [1..1000]]
    
  • Mathematica
    Table[Denominator[Sum[1/DivisorSigma[0, d], {d, Divisors@ n}]], {n, 83}] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    a(n) = denominator(sumdiv(n, d, 1/numdiv(d))); \\ Michel Marcus, Dec 09 2015

Formula

a(n) = A265391(n) / [Sum_{d|n} 1 / tau(d)] = A265391(n) * A253139(n) / A265390(n).
a(1) = 1; a(p) = 2 for p = prime; a(n) = n for numbers 1, 2, 36, 72, ...

A265390 a(n) = lcm_{d|n} tau(d) * Sum_{d|n} 1/tau(d), where tau(d) represents the number of divisors of d (A000005(d)).

Original entry on oeis.org

1, 3, 3, 11, 3, 9, 3, 25, 11, 9, 3, 33, 3, 9, 9, 137, 3, 33, 3, 33, 9, 9, 3, 75, 11, 9, 25, 33, 3, 27, 3, 147, 9, 9, 9, 121, 3, 9, 9, 75, 3, 27, 3, 33, 33, 9, 3, 411, 11, 33, 9, 33, 3, 75, 9, 75, 9, 9, 3, 99, 3, 9, 33, 1089, 9, 27, 3, 33, 9, 27, 3, 275, 3, 9, 33, 33, 9, 27, 3, 411, 137, 9, 3, 99, 9, 9, 9, 75, 3, 99, 9, 33
Offset: 1

Views

Author

Jaroslav Krizek, Dec 08 2015

Keywords

Examples

			For n = 6; divisors d of 6: {1, 2, 3, 6}; tau(d): {1, 2, 2, 4}; LCM_{d|6} tau(d) = 4; a(6) = 4/1 + 4/2 + 4/2 + 4/4 = 9.
		

Crossrefs

Programs

  • Magma
    [&+[LCM([NumberOfDivisors(d): d in Divisors(n)]) / NumberOfDivisors(d): d in Divisors(n) ]: n in [1..100]]
    
  • Mathematica
    Table[LCM @@ DivisorSigma[0, Divisors@ n] Sum[1/DivisorSigma[0, d], {d, Divisors@ n}], {n, 74}] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    A253139(n) = my(d = divisors(n)); lcm(vector(#d, k, numdiv(d[k]))); \\ This function from Michel Marcus, Jan 23 2015
    A265390(n) = (A253139(n) * sumdiv(n,d,(1/numdiv(d)))); \\ Antti Karttunen, Nov 24 2017

Formula

a(n) = A253139(n) * Sum_{d|n} 1/A000005(d) = A265391(n) * A253139(n) / A265392(n).
Multiplicative with a(p^e) = A025529(e+1) = (1/1 + 1/2 + 1/3 + ... + 1/(e+1)) * lcm{1, 2, 3, ..., e+1}.

Extensions

More terms from Antti Karttunen, Nov 24 2017

A265393 a(n) = the smallest number k such that floor(Sum_{d|k} 1/tau(d)) = n.

Original entry on oeis.org

1, 6, 24, 60, 180, 420, 840, 2520, 4620, 9240, 13860, 27720, 60060, 55440, 110880, 166320, 180180, 480480, 360360, 900900, 720720, 1441440, 1801800, 2162160, 3063060, 4084080, 7207200, 12612600, 6126120, 27027000, 12252240, 18378360, 43243200, 24504480
Offset: 1

Views

Author

Jaroslav Krizek, Dec 08 2015

Keywords

Comments

Further known terms: a(29) = 6126120, a(31) = 12252240.
Are there numbers n > 1 such that Sum_{d|n} 1/tau(d) is an integer?
Sequences of numbers n such that floor(Sum_{d|n} 1/tau(d)) = k for k = 1..6:
k=1: 1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, ... (A166684);
k=2: 6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, ...;
k=3: 24, 30, 36, 40, 42, 48, 54, 56, 66, 70, 72, 78, 80, 88, 96, 100, ...;
k=4: 60, 84, 90, 120, 126, 132, 140, 144, 150, 156, 168, 198, 204, 216, ...;
k=5: 180, 210, 240, 252, 300, 330, 336, 360, 390, 396, 450, 462, 468, ...;
k=6: 420, 630, 660, 720, 780, 900, 924, 990, 1008, 1020, 1050, 1080, ....
Values of function F = Sum_{d|n} 1/tau(d) for some numbers according to their prime signature: F{} = 1; F{1} = 3/2; F{2} = 11/6; F{1, 1} = 9/4; F{3} = 25/12; F{2, 1} = 11/4; F{4} = 137/60; F{3, 1} = 25/8, ...

Examples

			For n = 2; a(2) = 6 because 6 is the smallest number with floor(Sum_{d|6} 1/tau(d)) = floor(1/1 + 1/2 + 1/2 + 1/4) = floor(9/4) = 2.
		

Crossrefs

Cf. A237350 (a(n) = the smallest number k such that Sum_{d|k} 1/tau(d) >= n).

Programs

  • Magma
    a:=1; S:=[a]; for n in [2..14] do k:=0; flag:= true; while flag do k+:=1; if Floor(&+[1/NumberOfDivisors(d): d in Divisors(k)]) eq n then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
    
  • Mathematica
    Table[k = 1; While[Floor@ Sum[1/DivisorSigma[0, d], {d, Divisors@ k}] != n, k++]; k, {n, 17}] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    a(n) = {k=1; while(k, if(floor(sumdiv(k, d, 1/numdiv(d))) == n, return(k)); k++)} \\ Altug Alkan, Dec 09 2015

Extensions

More terms from Michel Marcus, Dec 23 2015
a(33)-a(34) from Hiroaki Yamanouchi, Dec 31 2015

A237350 a(n) = the smallest number k such that Sum_{d|k} 1/tau(d) >= n.

Original entry on oeis.org

1, 6, 24, 60, 180, 420, 840, 2520, 4620, 9240, 13860, 27720, 55440, 55440, 110880, 166320, 180180, 360360, 360360, 720720, 720720, 1441440, 1801800, 2162160, 3063060, 4084080, 6126120, 6126120, 6126120, 12252240, 12252240, 18378360, 24504480, 24504480, 30630600, 36756720
Offset: 1

Views

Author

Jaroslav Krizek, Dec 13 2015

Keywords

Comments

Are there numbers n > 1 such that Sum_{d|n} 1/tau(d) is an integer?
Values of function F = Sum_{d|n} 1/tau(d) for some numbers according to their prime signature: F{} = 1; F{1} = 3/2; F{2} = 11/6; F{1, 1} = 9/4; F{3} = 25/12; F{2, 1} = 11/4; F{4} = 137/60; F{3, 1} = 25/8, ...
All terms are of the form Product_{j=1..k} prime(j)^e(j) where e(j+1)<= e(j), and thus products of (not necessarily distinct) primorials. - Robert Israel, Dec 21 2015
From David A. Corneth, Nov 05 2019: (Start)
Instead of checking all divisors of A025487(n), one could use A318277 to see how often each prime signature occurs as a divisor.
Knowing the lcm of the terms below some m drastically improves the possibility of finding terms. In hindsight, knowing the lcm of the terms below 10^25 yields having to consider 1056 terms of A025487 instead of 222124. Is there some way to accurately predict the lcm to improve computation? (End)

Examples

			For n = 2; a(2) = 6 because 6 is the smallest number with Sum_{d|6} 1/tau(d) = 1/1 + 1/2 + 1/2 + 1/4 = 9/4 >= 2.
		

Crossrefs

Cf. A265393 (a(n) = the smallest number k such that floor(Sum_{d|k} 1/tau(d)) = n).

Programs

  • Magma
    a:=1; S:=[a]; for n in [2..14] do k:=0; flag:= true; while flag do k+:=1; if &+[1/NumberOfDivisors(d): d in Divisors(k)] gt n then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
    
  • Maple
    N:= 10^9: # to get all entries <= N
    Primorials:= NULL:
    p:= 2: P:= p:
    while P <= N do
      Primorials:= Primorials, P;
      p:= nextprime(p);
      P:= P*p;
    od:
    Primorials:= [Primorials]:
    S:= {1}:
    for i from 1 to nops(Primorials) do
      S:= {seq(seq(s*Primorials[i]^j,
           j = 0 .. floor(log[Primorials[i]](N/s))),s=S)}
    od:
    A:= NULL:
    S:= sort(convert(S,list)):
    xmax:= 0:
    for s in S do
      x:= floor(add(1/numtheory:-tau(d),d=numtheory:-divisors(s)));
      if x > xmax then
         A:= A, s$(x-xmax);
         xmax:= x
      fi
    od:
    A; # Robert Israel, Dec 21 2015
  • Mathematica
    s[1] = 1; s[n_] := DivisorSum[n, 1/DivisorSigma[0, #] &]; n = 1; k = 1; seq = {}; Do[While[s[k] < n, k++]; AppendTo[seq, k]; n++, {j, 1, 20}]; seq (* Amiram Eldar, Jan 30 2019 *)
  • PARI
    a(n) = {my(k=1); while(sumdiv(k, d, 1/numdiv(d)) < n, k++); k;} \\ Michel Marcus, Dec 20 2015

Extensions

a(24)-a(30) from Michel Marcus, Dec 20 2015
a(31)-a(35) from Robert Israel, Dec 21 2015
Missing a(31) = 12252240 inserted in data section by Georg Fischer, Nov 05 2019

A266226 a(n) = floor(Sum_{d|n} 1 / tau(d)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3
Offset: 1

Views

Author

Jaroslav Krizek, Dec 24 2015

Keywords

Comments

a(n) = floor(Sum_{d|n} 1 / A000005(d)).
Sequences of numbers n such that floor(Sum_{d|n} 1/tau(d)) = k for k = 1..6:
k=1: 1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, ... (A166684);
k=2: 6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, ...;
k=3: 24, 30, 36, 40, 42, 48, 54, 56, 66, 70, 72, 78, 80, 88, 96, 100, ...;
k=4: 60, 84, 90, 120, 126, 132, 140, 144, 150, 156, 168, 198, 204, 216, ...;
k=5: 180, 210, 240, 252, 300, 330, 336, 360, 390, 396, 450, 462, 468, ...;
k=6: 420, 630, 660, 720, 780, 900, 924, 990, 1008, 1020, 1050, 1080, ....
See A265393 - the smallest number n such that a(n) = k for k>= 1.

Examples

			For n = 6; a(6) = floor(Sum_{d|6} 1/tau(d)) = floor(1/1 + 1/2 + 1/2 + 1/4) = floor(9/4) = 2.
		

Crossrefs

Programs

  • Magma
    [Floor(&+[1/NumberOfDivisors(d): d in Divisors(n)]): n in [1..100]];
  • Mathematica
    Table[Floor[Sum[1/DivisorSigma[0, d], {d, Divisors[ n]}]], {n, 1, 100}] (* G. C. Greubel, Dec 24 2015 *)

A069165 a(n) are the integers corresponding to A069164(n).

Original entry on oeis.org

1, 3, 33, 55, 75, 77, 121, 125, 121, 143, 175, 187, 275, 209, 274, 275, 253, 325, 319, 341, 425, 407, 475, 588, 451, 473, 575, 517, 583, 725, 649, 1233, 671, 775, 737, 781, 803, 925, 869, 1025, 913, 1075, 979, 1175, 1067, 1111, 1133, 1325, 1177, 2055, 1199
Offset: 1

Views

Author

Benoit Cloitre, Apr 09 2002

Keywords

Comments

The previous name was "Integers of the form k * Sum_{d|k} 1/tau(d)", but this did not take into account the occurrence of multiple terms and the non-ascending order.

Crossrefs

Programs

  • Mathematica
    Select[Table[n * DivisorSum[n, 1/DivisorSigma[0, #] &], {n, 1, 500}], IntegerQ] (* Amiram Eldar, Apr 29 2025 *)

Formula

a(n) = f(A069164(n)), where f(n) = n*A265391(n)/A265392(n). - Amiram Eldar, Apr 29 2025

Extensions

Name corrected by Hugo Pfoertner, Jul 07 2024

A265719 Numbers n such that Sum_{d|n} 1/tau(d) > Sum_{d|m} 1/tau(d) for all m < n.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 30, 48, 60, 120, 180, 210, 240, 360, 420, 720, 840, 1260, 1680, 2520, 4620, 5040, 7560, 9240, 13860, 18480, 27720, 55440, 83160, 110880, 120120, 166320, 180180, 240240, 360360, 720720, 1081080, 1441440, 1801800, 2042040, 2162160, 3063060, 3603600, 4084080
Offset: 1

Views

Author

Jaroslav Krizek, Dec 14 2015

Keywords

Comments

Where record values of Sum_{d|n} 1/tau(d) occur.
Terms a(n) are the smallest number from sequences numbers with following prime signatures: {}, {1}, {2}, {1, 1}, {2, 1}, {3, 1}, {1, 1, 1}, {4, 1}, {2, 1, 1}, {3, 1, 1}, {2, 2, 1}, {1, 1, 1, 1}, {4, 1, 1}, {3, 2, 1}, ...

Examples

			For n = 4; a(4) = 6 because 6 is the smallest number such that Sum_{d|a(4)} 1/tau(d) = Sum_{d|6} 1/tau(d) = 9/4 > Sum_{d|a(3)} 1/tau(d) = Sum_{d|4} 1/tau(d) = 11/6.
		

Crossrefs

Programs

  • Magma
    a:=1; S:=[a]; for n in [2..25] do k:=0; flag:= true; while flag do k+:=1; if &+[1/NumberOfDivisors(d): d in Divisors(a)] lt &+[1/NumberOfDivisors(d): d in Divisors(k)] then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
    
  • PARI
    lista(nn) = {m = 0; for (n=1, nn, if ((mm = sumdiv(n, d, 1/numdiv(d))) > m, print1(n, ", "); m = mm););} \\ Michel Marcus, Dec 22 2015

Extensions

More terms from Michel Marcus, Dec 22 2015
Showing 1-7 of 7 results.