A327078
Binomial transform of A001187 (labeled connected graphs), if we assume A001187(1) = 0.
Original entry on oeis.org
1, 1, 2, 8, 61, 969, 31738, 2069964, 267270033, 68629753641, 35171000942698, 36024807353574280, 73784587576805254653, 302228602363365451957793, 2475873310144021668263093202, 40564787336902311168400640561084
Offset: 0
The a(0) = 1 through a(3) = 8 edge-sets:
{} {} {} {}
{{1,2}} {{1,2}}
{{1,3}}
{{2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
-
b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-add(
k*binomial(n, k)*2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
end:
a:= n-> add(b(n-j)*binomial(n, j), j=0..n-2)+1:
seq(a(n), n=0..18); # Alois P. Heinz, Aug 27 2019
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&]],{n,0,5}]
A056066
Expansion of log( dC(x)/dx ), C(x) = e.g.f. for labeled connected graphs (A001187).
Original entry on oeis.org
0, 1, 3, 28, 570, 22568, 1682352, 237014512, 64144890960, 33877404737792, 35289907832496768, 72958473002707495168, 300387071466709317941760, 2467720611903398552604259328, 40493022471111759715270671578112, 1327970521286614645847457853386207232
Offset: 0
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 16, Eq. (1.3.3).
-
b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
end:
a:= proc(n) option remember; `if`(n=0, 0, b(n+1)-
add(k*binomial(n, k)*b(n+1-k)*a(k), k=1..n-1)/n)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Sep 09 2013
-
nn=14;f[x_]:=Log[Sum[2^Binomial[n,2]x^n/n!,{n,0,nn}]]+1;Range[0,nn]!CoefficientList[Series[f[2x]-f[x],{x,0,nn}],x] (* Geoffrey Critzer, Sep 09 2013 *)
A360603
Triangle read by rows. T(n, k) = A360604(n, k) * A001187(k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 4, 0, 8, 6, 12, 38, 0, 64, 32, 48, 152, 728, 0, 1024, 320, 320, 760, 3640, 26704, 0, 32768, 6144, 3840, 6080, 21840, 160224, 1866256, 0, 2097152, 229376, 86016, 85120, 203840, 1121568, 13063792, 251548592
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 2, 2, 4;
[4] 0, 8, 6, 12, 38;
[5] 0, 64, 32, 48, 152, 728;
[6] 0, 1024, 320, 320, 760, 3640, 26704;
[7] 0, 32768, 6144, 3840, 6080, 21840, 160224, 1866256;
[8] 0, 2097152, 229376, 86016, 85120, 203840, 1121568, 13063792, 251548592.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.
Cf.
A006125 Graphs on n labeled nodes, T(n+1, 1) and Sum_{k=0..n} T(n, k).
Cf.
A054592 Disconnected labeled graphs with n nodes, Sum_{k=0..n-1} T(n, k).
Cf.
A001187 Connected labeled graphs with n nodes, T(n, n).
Cf.
A123903 Isolated nodes in all simple labeled graphs on n nodes, T(n+2, 2).
Cf.
A053549 Labeled rooted connected graphs, T(n+1, n).
Cf.
A275462 Leaves in all simple labeled connected graphs on n nodes T(n+2, n).
Cf.
A060818 gcd_{k=0..n} T(n, k) = gcd(n!, 2^n).
Cf.
A143543 Labeled graphs on n nodes with k connected components.
Cf.
A095340 Total number of nodes in all labeled graphs on n nodes.
-
T := (n, k) -> 2^binomial(n-k, 2)*binomial(n-1, k-1)*A001187(k):
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
# Based on the recursion:
Trow := proc(n) option remember; if n = 0 then return [1] fi;
seq(2^binomial(n-k, 2) * binomial(n-1, k-1) * Trow(k)[k+1], k = 1..n-1);
2^(n*(n-1)/2) - add(j, j = [%]); [0, %%, %] end:
seq(print(Trow(n)), n = 0..8);
-
A001187[n_] := A001187[n] = 2^((n - 1)*n/2) - Sum[Binomial[n - 1, k]*2^((k - n + 1)*(k - n + 2)/2)*A001187[k + 1], {k, 0, n - 2}];
T[n_, k_] := 2^Binomial[n - k, 2]*Binomial[n - 1, k - 1]*A001187[k];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 02 2023, after Peter Luschny in A001187 *)
-
from math import comb as binomial
from functools import cache
@cache
def A360603Row(n: int) -> list[int]:
if n == 0: return [1]
s = [2 ** (((k - n + 1) * (k - n)) // 2) * binomial(n - 1, k - 1) * A360603Row(k)[k] for k in range(1, n)]
b = 2 ** (((n - 1) * n) // 2) - sum(s)
return [0] + s + [b]
A006125
a(n) = 2^(n*(n-1)/2).
Original entry on oeis.org
1, 1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, 35184372088832, 36028797018963968, 73786976294838206464, 302231454903657293676544, 2475880078570760549798248448, 40564819207303340847894502572032, 1329227995784915872903807060280344576
Offset: 0
From _Gus Wiseman_, Feb 11 2021: (Start)
This sequence counts labeled graphs on n vertices. For example, the a(0) = 1 through a(2) = 8 graph edge sets are:
{} {} {} {}
{12} {12}
{13}
{23}
{12,13}
{12,23}
{13,23}
{12,13,23}
This sequence also counts labeled graphs with loops on n - 1 vertices. For example, the a(1) = 1 through a(3) = 8 edge sets are the following. A loop is represented as an edge with two equal vertices.
{} {} {}
{11} {11}
{12}
{22}
{11,12}
{11,22}
{12,22}
{11,12,22}
(End)
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 547 (Fig. 9.7), 573.
- G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 178.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
- F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 178.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 3, Eq. (1.1.2).
- J. Propp, Enumeration of matchings: problems and progress, in: New perspectives in geometric combinatorics, L. Billera et al., eds., Mathematical Sciences Research Institute series, vol. 38, Cambridge University Press, 1999.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 0..50
- F. Ardila and R. P. Stanley, Tilings, arXiv:math/0501170 [math.CO], 2005.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - From _N. J. A. Sloane_, Oct 08 2012
- Anders Björner and Richard P. Stanley, A combinatorial miscellany, 2010.
- Tobias Boege and Thomas Kahle, Construction Methods for Gaussoids, arXiv:1902.11260 [math.CO], 2019.
- Taylor Brysiewicz and Fulvio Gesmundo, The Degree of Stiefel Manifolds, arXiv:1909.10085 [math.AG], 2019.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Mihai Ciucu, Perfect matchings of cellular graphs, J. Algebraic Combin., 5 (1996) 87-103.
- Mihai Ciucu, Enumeration of perfect matchings in graphs with reflective symmetry, J. Combin. Theory Ser. A 77 (1997), no. 1, 67-97.
- Thierry de la Rue and Élise Janvresse, Pavages aléatoires par touillage de dominos, Images des Mathématiques, CNRS, 2023. In French.
- Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating sign matrices and domino tilings. Part I, Journal of Algebraic Combinatorics 1-2, 111-132 (1992).
- Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating sign matrices and domino tilings. Part II, Journal of Algebraic Combinatorics 1-3, 219-234 (1992).
- Sen-Peng Eu and Tung-Shan Fu, A simple proof of the Aztec diamond theorem, arXiv:math/0412041 [math.CO], 2004.
- D. Grensing, I. Carlsen, and H.-Chr. Zapp, Some exact results for the dimer problem on plane lattices with non-standard boundaries, Phil. Mag. A, 41:5 (1980), 777-781.
- Harald Helfgott and Ira M. Gessel, Enumeration of tilings of diamonds and hexagons with defects, arXiv:math/9810143 [math.CO], 1998.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Pakawut Jiradilok, Some Combinatorial Formulas Related to Diagonal Ramsey Numbers, arXiv:2404.02714 [math.CO], 2024. See p. 19.
- William Jockusch, Perfect matchings and perfect squares J. Combin. Theory Ser. A 67 (1994), no. 1, 100-115.
- Eric H. Kuo, Applications of graphical condensation for enumerating matchings and tilings, Theoretical Computer Science, Vol. 319, No. 1-3 (2004), pp. 29-57, arXiv preprint, arXiv:math/0304090 [math.CO], 2003.
- C. L. Mallows & N. J. A. Sloane, Emails, May 1991
- W. H. Mills, David P. Robbins, and Howard Rumsey, Jr., Alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A 34 (1983), 340-359.
- Götz Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- James Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- James Propp, Enumeration of matchings: problems and progress, arXiv:math/9904150 [math.CO], 1999.
- James Propp, Lessons I learned from Richard Stanley, arXiv preprint [math.CO], 2015.
- James Propp and R. P. Stanley, Domino tilings with barriers, arXiv:math/9801067 [math.CO], 1998.
- Steven S. Skiena, Generating graphs.
- David E. Speyer, Perfect matchings and the octahedron recurrence, Journal of Algebraic Combinatorics, Vol. 25, No. 3 (2007), pp. 309-348, arXiv preprint, arXiv:math/0402452 [math.CO], 2004.
- Jan Tóth and Ondřej Kuželka, Complexity of Weighted First-Order Model Counting in the Two-Variable Fragment with Counting Quantifiers: A Bound to Beat, arXiv:2404.12905 [cs.LO], 2024. See p. 24.
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- Eric Weisstein's World of Mathematics, Connected Graph.
- Eric Weisstein's World of Mathematics, Labeled Graph.
- Eric Weisstein's World of Mathematics, Symmetric Matrix.
- Doron Zeilberger, Dave Robbins's Art of Guessing, Adv. in Appl. Math. 34 (2005), 939-954.
- Index entries for sequences related to dominoes
Cf.
A001187 (connected labeled graphs).
The unlabeled version is
A000088, or
A002494 without isolated vertices.
The version for hypergraphs is
A058891, or
A016031 without singletons.
The case of connected edge set is
A287689.
-
[2^(n*(n-1) `div` 2) | n <- [0..20]] -- José E. Solsona, Feb 05 2023
-
[2^(n*(n-1) div 2): n in [0..20]]; // Vincenzo Librandi, Jul 03 2019
-
Join[{1}, 2^Accumulate[Range[0, 20]]] (* Harvey P. Dale, May 09 2013 *)
Table[2^(n (n - 1) / 2), {n, 0, 20}] (* Vincenzo Librandi, Jul 03 2019 *)
Table[2^Binomial[n, 2], {n, 0, 15}] (* Eric W. Weisstein, Jan 03 2021 *)
2^Binomial[Range[0, 15], 2] (* Eric W. Weisstein, Jan 03 2021 *)
Prepend[Table[Count[Tuples[{0, 1}, {n, n}], ?SymmetricMatrixQ], {n, 5}], 1] (* _Eric W. Weisstein, Jan 03 2021 *)
Prepend[Table[Count[Tuples[{-1, 1}, {n, n}], ?PositiveDefiniteMatrixQ], 1], {n, 4}] (* _Eric W. Weisstein, Jan 03 2021 *)
-
A006125(n):=2^(n*(n-1)/2)$ makelist(A006125(n), n, 0, 30); /* Martin Ettl, Oct 24 2012 */
-
a(n)=1<Charles R Greathouse IV, Jun 15 2011
-
def A006125(n): return 1<<(n*(n-1)>>1) # Chai Wah Wu, Nov 09 2023
A002494
Number of n-node graphs without isolated nodes.
Original entry on oeis.org
1, 0, 1, 2, 7, 23, 122, 888, 11302, 262322, 11730500, 1006992696, 164072174728, 50336940195360, 29003653625867536, 31397431814147073280, 63969589218557753586160, 245871863137828405125824848, 1787331789281458167615194471072, 24636021675399858912682459613241920
Offset: 0
From _Gus Wiseman_, Aug 02 2018: (Start)
Non-isomorphic representatives of the a(4) = 7 graphs:
(12)(34)
(12)(13)(14)
(12)(13)(24)
(12)(13)(14)(23)
(12)(13)(24)(34)
(12)(13)(14)(23)(24)
(12)(13)(14)(23)(24)(34)
(End)
- F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 214.
- W. L. Kocay, Some new methods in reconstruction theory, Combinatorial Mathematics IX, 952 (1982) 89--114. [From Benoit Jubin, Sep 06 2008]
- W. L. Kocay, On reconstructing spanning subgraphs, Ars Combinatoria, 11 (1981) 301--313. [From Benoit Jubin, Sep 06 2008]
- J. H. Redfield, The theory of group-reduced distributions, Amer. J. Math., 49 (1927), 433-435; reprinted in P. A. MacMahon, Coll. Papers I, pp. 805-827.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=0..75 (using A000088)
- P. C. Fishburn and W. V. Gehrlein, Niche numbers, J. Graph Theory, 16 (1992), 131-139.
- R. J. Mathar, Illustrations (2023)
- J. H. Redfield, The theory of group-reduced distributions [Annotated scan of pages 452 and 453 only]
- Eric Weisstein's World of Mathematics, Isolated Point.
- Eric Weisstein's World of Mathematics, Graphical Partition
- Gus Wiseman, Sequences enumerating clutters, antichains, hypertrees, and hyperforests, organized by labeling, spanning, and allowance of singletons.
-
b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
+add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
end:
a:= n-> b(n$2, [])-`if`(n>0, b(n-1$2, []), 0):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 14 2019
-
<< MathWorld`Graphs`
Length /@ (gp = Select[ #, GraphicalPartitionQ] & /@
Graphs /@ Range[9])
nn = 20; g = Sum[NumberOfGraphs[n] x^n, {n, 0, nn}]; CoefficientList[Series[ g (1 - x), {x, 0, nn}], x] (*Geoffrey Critzer, Apr 14 2012*)
sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
Table[Length[Union[sysnorm/@Select[Subsets[Select[Subsets[Range[n]],Length[#]==2&]],Union@@#==Range[n]&]]],{n,6}] (* Gus Wiseman, Aug 02 2018 *)
b[n_, i_, l_] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[Ceiling[(p[[j]]-1)/2] + Sum[GCD[p[[k]], p[[j]]], {k, 1, j-1}], {j, 1, Length[p]}]][Join[l, Table[1, {n}]]]), Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]];
a[n_] := b[n, n, {}] - If[n > 0, b[n-1, n-1, {}], 0];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2019, after Alois P. Heinz *)
-
from itertools import combinations
from math import prod, factorial, gcd
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A002494(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q,r in p.items()),prod(q**r*factorial(r) for q,r in p.items())) for p in partitions(n))-sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q,r in p.items()),prod(q**r*factorial(r) for q,r in p.items())) for p in partitions(n-1))) if n else 1 # Chai Wah Wu, Jul 03 2024
A323818
Number of connected set-systems covering n vertices.
Original entry on oeis.org
1, 1, 4, 96, 31840, 2147156736, 9223372011084915712, 170141183460469231602560095199828453376, 57896044618658097711785492504343953923912733397452774312021795134847892828160
Offset: 0
The a(2) = 4 set-systems:
{{1, 2}}
{{1}, {1,2}}
{{2}, {1,2}}
{{1}, {2}, {1,2}}
-
m:=12;
f:= func< x | 1-x + Log( (&+[2^(2^n-1)*x^n/Factorial(n): n in [0..m+2]]) ) >;
R:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Oct 04 2022
-
b:= n-> add(binomial(n, k)*2^(2^(n-k)-1)*(-1)^k, k=0..n):
a:= proc(n) option remember; b(n)-`if`(n=0, 0, add(
k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n)
end:
seq(a(n), n=0..8); # Alois P. Heinz, Jan 30 2019
-
nn=8;
ser=Sum[2^(2^n-1)*x^n/n!,{n,0,nn}];
Table[SeriesCoefficient[1-x+Log[ser],{x,0,n}]*n!,{n,0,nn}]
-
m=12;
def f(x): return 1-x + log(sum(2^(2^n-1)*x^n/factorial(n) for n in range(m+2)))
def A_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).egf_to_ogf().list()
A_list(m) # G. C. Greubel, Oct 04 2022
A133686
Number of labeled n-node graphs with at most one cycle in each connected component.
Original entry on oeis.org
1, 1, 2, 8, 57, 608, 8524, 145800, 2918123, 66617234, 1704913434, 48300128696, 1499864341015, 50648006463048, 1847622972848648, 72406232075624192, 3033607843748296089, 135313823447621913500, 6402077421524339766058, 320237988317922139148736
Offset: 0
Below we see the 7 partitions of n=5 in the form c_1 + 2c_2 + ... + nc_n followed by the corresponding number of graphs. We consider the values of A129271(j) given by the table
j|1|2|3| 4| 5|
----+-+-+-+--+---+
a(j)|1|1|4|31|347|
1*5 -> 5!1^5 / (1!^5 * 5!) = 1
2*1 + 1*3 -> 5!1^1 * 1^3 / (2!^1 * 1! * 1!^3 * 3!) = 10
2*2 + 1*1 -> 5!1^2 * 1^1 / (2!^2 * 2! * 1!^1 * 1!) = 15
3*1 + 1*2 -> 5!4^1 * 1^2 / (3!^1 * 1! * 1!^2 * 2!) = 40
3*1 + 2*1 -> 5!4^1 * 1^1 / (3!^1 * 1! * 2!^1 * 1!) = 40
4*1 + 1*1 -> 5!31^1 * 1^1 / (4!^1 * 1! * 1!^1 * 1!) = 155
5*1 -> 5!347^1 / (5!^1 * 1!) = 347
Total 608
A143543 counts graphs by number of connected components.
-
cy:= proc(n) option remember; binomial(n-1, 2)*
add((n-3)!/(n-2-t)! *n^(n-2-t), t=1..n-2)
end:
T:= proc(n,k) option remember;
if k=0 then 1
elif k<0 or n add(T(n,k), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Sep 15 2008
-
nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[ Exp[t/2-3t^2/4]/(1-t)^(1/2),{x,0,nn}],x] (* Geoffrey Critzer, Sep 05 2012 *)
Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Select[Tuples[#], UnsameQ@@#&]!={}&]],{n,0,5}] (* Gus Wiseman, Dec 22 2023 *)
-
x='x+O('x^50); Vec(serlaplace(sqrt(-lambertw(-x)/(x*(1+ lambertw(-x))))*exp(-(3/4)*lambertw(-x)^2))) \\ G. C. Greubel, Nov 16 2017
A057500
Number of connected labeled graphs with n edges and n nodes.
Original entry on oeis.org
0, 0, 1, 15, 222, 3660, 68295, 1436568, 33779340, 880107840, 25201854045, 787368574080, 26667815195274, 973672928417280, 38132879409281475, 1594927540549217280, 70964911709203684440, 3347306760024413356032, 166855112441313024389625, 8765006377126199463936000
Offset: 1
Qing-Hu Hou and David C. Torney (dct(AT)lanl.gov), Sep 01 2000
E.g., a(4)=15 because there are three different (labeled) 4-cycles and 12 different labeled graphs with a 3-cycle and an attached, external vertex.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.
- C. L. Mallows, Letter to N. J. A. Sloane, 1980.
- R. J. Riddell, Contributions to the theory of condensation, Dissertation, Univ. of Michigan, Ann Arbor, 1951.
- Alois P. Heinz, Table of n, a(n) for n = 1..300 (terms n = 1..50 from Washington G. Bomfim)
- Federico Ardila, Matthias Beck, Jodi McWhirter, The Arithmetic of Coxeter Permutahedra, arXiv:2004.02952 [math.CO], 2020.
- Steven R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 22 Aug 2024.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 133.
- S. Janson, D. E. Knuth, T. Łuczak and B. Pittel, The Birth of the Giant Component, arXiv:math/9310236 [math.PR], 1993.
- S. Janson, D. E. Knuth, T. Łuczak and B. Pittel, The Birth of the Giant Component, Random Structures and Algorithms Vol. 4 (1993), 233-358.
- Younng-Jin Kim and Woong Kook, Winding number and Cutting number of Harmonic cycle, arXiv:1812.04930 [math.CO], 2018.
- C. L. Mallows, Letter to N. J. A. Sloane, 1980
- Marko Riedel et al., Non-isomorphic, connected, unicyclic graphs, Math Stackexchange, November 2018. (Proof of closed form by Cauchy Coefficient Formula / Lagrange Inversion.)
- Chris Ying, Enumerating Unique Computational Graphs via an Iterative Graph Invariant, arXiv:1902.06192 [cs.DM], 2019.
This is the connected and covering case of
A116508.
This is the covering case of
A370317.
Counting only covering vertices gives
A370318.
Cf.
A062734,
A098909,
A123527,
A129137,
A133686,
A143543,
A323818,
A367916,
A367917,
A369191,
A369197.
-
egf:= -1/2*ln(1+LambertW(-x)) +1/2*LambertW(-x) -1/4*LambertW(-x)^2:
a:= n-> n!*coeff(series(egf, x, n+3), x, n):
seq(a(n), n=1..25); # Alois P. Heinz, Mar 27 2013
-
nn=20; t=Sum[n^(n-1) x^n/n!, {n,1,nn}]; Drop[Range[0,nn]! CoefficientList[Series[Log[1/(1-t)]/2-t^2/4-t/2, {x,0,nn}], x], 1] (* Geoffrey Critzer, Oct 07 2012 *)
a[n_] := (n-1)!*n^n/2*Sum[1/(n^k*(n-k)!), {k, 3, n}]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Jan 15 2014, after Vladeta Jovovic *)
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[#]==n&&Length[csm[#]]<=1&]],{n,0,5}] (* Gus Wiseman, Feb 19 2024 *)
-
# Warning: Floating point calculation. Adjust precision as needed!
from mpmath import mp, chop, gammainc
mp.dps = 200; mp.pretty = True
for n in (1..100):
print(chop((n^(n-2)*(1-3*n)+exp(n)*gammainc(n+1, n)/n)/2))
# Peter Luschny, Jan 27 2016
A367867
Number of labeled simple graphs with n vertices contradicting a strict version of the axiom of choice.
Original entry on oeis.org
0, 0, 0, 0, 7, 416, 24244, 1951352, 265517333, 68652859502, 35182667175398, 36028748718835272, 73786974794973865449, 302231454853009287213496, 2475880078568912926825399800, 40564819207303268441662426947840, 1329227995784915869870199216532048487
Offset: 0
Non-isomorphic representatives of the a(4) = 7 graphs:
{{1,2},{1,3},{1,4},{2,3},{2,4}}
{{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
The connected case is
A140638 (graphs with more than one cycle).
A143543 counts simple labeled graphs by number of connected components.
Cf.
A057500,
A116508,
A326754,
A355739,
A355740,
A367769,
A367770,
A367863,
A367901,
A367902,
A367904.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Select[Tuples[#],UnsameQ@@#&]=={}&]],{n,0,5}]
A116508
a(n) = C( C(n,2), n).
Original entry on oeis.org
1, 0, 0, 1, 15, 252, 5005, 116280, 3108105, 94143280, 3190187286, 119653565850, 4922879481520, 220495674290430, 10682005290753420, 556608279578340080, 31044058215401404845, 1845382436487682488000, 116475817125419611477660, 7779819801401934344268210
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Mar 21 2006
a(5) = C(C(5,2),5) = C(10,5) = 252.
-
[0] cat [(Binomial(Binomial(n+2, n), n+2)): n in [0..20]]; // Vincenzo Librandi, Nov 03 2014
-
a:= n-> binomial(binomial(n, 2), n):
seq(a(n), n=0..20);
-
nn = 18; f[x_, y_] :=
Sum[(1 + y)^Binomial[n, 2] x^n/n!, {n, 1, nn}]; Table[
n! Coefficient[Series[f[x, y], {x, 0, nn}], x^n y^n], {n, 1, nn}] (* Geoffrey Critzer, Nov 02 2014 *)
Table[Length[Subsets[Subsets[Range[n],{2}],{n}]],{n,0,5}] (* Gus Wiseman, Dec 22 2023 *)
Table[SeriesCoefficient[(1 + x)^(n*(n-1)/2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 06 2025 *)
-
from math import comb
def A116508(n): return comb(n*(n-1)>>1,n) # Chai Wah Wu, Jul 02 2024
-
[(binomial(binomial(n+2,n),n+2)) for n in range(-1, 17)] # Zerinvary Lajos, Nov 30 2009
Showing 1-10 of 156 results.
Comments