cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 111 results. Next

A059201 Number of T_0-covers of a labeled n-set.

Original entry on oeis.org

1, 1, 4, 96, 31692, 2147001636, 9223371991763269704, 170141183460469231473432887375376674952, 57896044618658097711785492504343953920509909728243389682424010192567186540224
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jan 16 2001

Keywords

Comments

A cover of a set is a T_0-cover if for every two distinct points of the set there exists a member (block) of the cover containing one but not the other point.
From Gus Wiseman, Aug 13 2019: (Start)
A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges). For example, the a(2) = 4 covers are:
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
(End)

Crossrefs

Row sums of A059202.
Covering set-systems are A003465.
The unlabeled version is A319637.
The version with empty edges allowed is A326939.
The non-covering version is A326940.
BII-numbers of T_0 set-systems are A326947.
The same with connected instead of covering is A326948.
The T_1 version is A326961.

Programs

  • Mathematica
    Table[Sum[StirlingS1[n + 1, k]*2^(2^(k - 1) - 1), {k, 0, n + 1}], {n,0,5}] (* G. C. Greubel, Dec 28 2016 *)
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 13 2019 *)

Formula

a(n) = Sum_{i=0..n+1} stirling1(n+1, i)*2^(2^(i-1)-1).
a(n) = Sum_{m=0..2^n-1} A059202(n,m).
Inverse binomial transform of A326940 and exponential transform of A326948. - Gus Wiseman, Aug 13 2019

A003024 Number of acyclic digraphs (or DAGs) with n labeled nodes.

Original entry on oeis.org

1, 1, 3, 25, 543, 29281, 3781503, 1138779265, 783702329343, 1213442454842881, 4175098976430598143, 31603459396418917607425, 521939651343829405020504063, 18676600744432035186664816926721, 1439428141044398334941790719839535103, 237725265553410354992180218286376719253505
Offset: 0

Views

Author

Keywords

Comments

Also the number of n X n real (0,1)-matrices with all eigenvalues positive. - Conjectured by Eric W. Weisstein, Jul 10 2003 and proved by McKay et al. 2003, 2004
Also the number of n X n real (0,1)-matrices with permanent equal to 1, up to permutation of rows/columns, cf. A089482. - Vladeta Jovovic, Oct 28 2009
Also the number of nilpotent elements in the semigroup of binary relations on [n]. - Geoffrey Critzer, May 26 2022
From Gus Wiseman, Jan 01 2024: (Start)
Also the number of sets of n nonempty subsets of {1..n} such that there is a unique way to choose a different element from each. For example, non-isomorphic representatives of the a(3) = 25 set-systems are:
{{1},{2},{3}}
{{1},{2},{1,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,2},{1,2,3}}
These set-systems have ranks A367908, subset of A367906, for multisets A368101.
The version for no ways is A368600, any length A367903, ranks A367907.
The version for at least one way is A368601, any length A367902.
(End)

Examples

			For n = 2 the three (0,1)-matrices are {{{1, 0}, {0, 1}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}}}.
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 310.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, Eq. (1.6.1).
  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P Stanley, Enumerative Combinatorics I, 2nd. ed., p. 322.

Crossrefs

Cf. A086510, A081064 (refined by # arcs), A307049 (by # descents).
Cf. A055165, which counts nonsingular {0, 1} matrices and A085656, which counts positive definite {0, 1} matrices.
Cf. A188457, A135079, A137435 (acyclic 3-multidigraphs), A188490.
For a unique sink we have A003025.
The unlabeled version is A003087.
These are the reverse-alternating sums of rows of A046860.
The weakly connected case is A082402.
A reciprocal version is A334282.
Row sums of A361718.

Programs

  • Maple
    p:=evalf(solve(sum((-1)^n*x^n/(n!*2^(n*(n-1)/2)), n=0..infinity) = 0, x), 50); M:=evalf(sum((-1)^(n+1)*p^n/((n-1)!*2^(n*(n-1)/2)), n=1..infinity), 40); # program for evaluation of constants p and M in the asymptotic formula, Vaclav Kotesovec, Dec 09 2013
  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[ -(-1)^k * Binomial[n, k] * 2^(k*(n-k)) * a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 13}](* Jean-François Alcover, May 21 2012, after PARI *)
    Table[2^(n*(n-1)/2)*n! * SeriesCoefficient[1/Sum[(-1)^k*x^k/k!/2^(k*(k-1)/2),{k,0,n}],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 19 2015 *)
    Table[Length[Select[Subsets[Subsets[Range[n]],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,5}] (* Gus Wiseman, Jan 01 2024 *)
  • PARI
    a(n)=if(n<1,n==0,sum(k=1,n,-(-1)^k*binomial(n,k)*2^(k*(n-k))*a(n-k)))
    
  • PARI
    {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+2^k*x+x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Oct 17 2009

Formula

a(0) = 1; for n > 0, a(n) = Sum_{k=1..n} (-1)^(k+1)*C(n, k)*2^(k*(n-k))*a(n-k).
1 = Sum_{n>=0} a(n)*exp(-2^n*x)*x^n/n!. - Vladeta Jovovic, Jun 05 2005
a(n) = Sum_{k=1..n} (-1)^(n-k)*A046860(n,k) = Sum_{k=1..n} (-1)^(n-k)*k!*A058843(n,k). - Vladeta Jovovic, Jun 20 2008
1 = Sum_{n=>0} a(n)*x^n/(1 + 2^n*x)^(n+1). - Paul D. Hanna, Oct 17 2009
1 = Sum_{n>=0} a(n)*C(n+m-1,n)*x^n/(1 + 2^n*x)^(n+m) for m>=1. - Paul D. Hanna, Apr 01 2011
log(1+x) = Sum_{n>=1} a(n)*(x^n/n)/(1 + 2^n*x)^n. - Paul D. Hanna, Apr 01 2011
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is 1/E(-x) = Sum_{n >= 0} a(n)*x^n/(n!*2^C(n,2)) = 1 + x + 3*x^2/(2!*2) + 25*x^3/(3!*2^3) + 543*x^4/(4!*2^6) + ... (Stanley). Cf. A188457. - Peter Bala, Apr 01 2013
a(n) ~ n!*2^(n*(n-1)/2)/(M*p^n), where p = 1.488078545599710294656246... is the root of the equation Sum_{n>=0} (-1)^n*p^n/(n!*2^(n*(n-1)/2)) = 0, and M = Sum_{n>=1} (-1)^(n+1)*p^n/((n-1)!*2^(n*(n-1)/2)) = 0.57436237330931147691667... Both references to the article "Acyclic digraphs and eigenvalues of (0,1)-matrices" give the wrong value M=0.474! - Vaclav Kotesovec, Dec 09 2013 [Response from N. J. A. Sloane, Dec 11 2013: The value 0.474 has a typo, it should have been 0.574. The value was taken from Stanley's 1973 paper.]
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 10*x^3 + 146*x^4 + 6010*x^5 + ... appears to have integer coefficients (cf. A188490). - Peter Bala, Jan 14 2016

A367903 Number of sets of nonempty subsets of {1..n} contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 1, 67, 30997, 2147296425, 9223372036784737528, 170141183460469231731687303625772608225, 57896044618658097711785492504343953926634992332820282019728791606173188627779
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(2) = 1 set-system is {{1},{2},{1,2}}.
The a(3) = 67 set-systems have following 21 non-isomorphic representatives:
  {{1},{2},{1,2}}
  {{1},{2},{3},{1,2}}
  {{1},{2},{3},{1,2,3}}
  {{1},{2},{1,2},{1,3}}
  {{1},{2},{1,2},{1,2,3}}
  {{1},{2},{1,3},{2,3}}
  {{1},{2},{1,3},{1,2,3}}
  {{1},{1,2},{1,3},{2,3}}
  {{1},{1,2},{1,3},{1,2,3}}
  {{1},{1,2},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3}}
  {{1},{2},{3},{1,2},{1,2,3}}
  {{1},{2},{1,2},{1,3},{2,3}}
  {{1},{2},{1,2},{1,3},{1,2,3}}
  {{1},{2},{1,3},{2,3},{1,2,3}}
  {{1},{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3},{1,2,3}}
  {{1},{2},{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Multisets of multisets of this type are ranked by A355529.
The version without singletons is A367769.
The version for simple graphs is A367867, covering A367868.
The version allowing empty edges is A367901.
The complement is A367902, without singletons A367770, ranks A367906.
For a unique choice (instead of none) we have A367904, ranks A367908.
These set-systems have ranks A367907.
An unlabeled version is A368094, for multiset partitions A368097.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]]], Select[Tuples[#],UnsameQ@@#&]=={}&]],{n,0,3}]

Formula

a(n) + A367904(n) + A367772(n) = A058891(n+1) = 2^(2^n-1).

Extensions

a(5)-a(8) from Christian Sievers, Jul 26 2024

A057500 Number of connected labeled graphs with n edges and n nodes.

Original entry on oeis.org

0, 0, 1, 15, 222, 3660, 68295, 1436568, 33779340, 880107840, 25201854045, 787368574080, 26667815195274, 973672928417280, 38132879409281475, 1594927540549217280, 70964911709203684440, 3347306760024413356032, 166855112441313024389625, 8765006377126199463936000
Offset: 1

Views

Author

Qing-Hu Hou and David C. Torney (dct(AT)lanl.gov), Sep 01 2000

Keywords

Comments

Equivalently, number of connected unicyclic (i.e., containing one cycle) graphs on n labeled nodes. - Vladeta Jovovic, Oct 26 2004
a(n) is the number of trees on vertex set [n] = {1,2,...,n} rooted at 1 with one marked inversion (an inversion is a pair (i,j) with i > j and j a descendant of i in the tree). Here is a bijection from the title graphs (on [n]) to these marked trees. A title graph has exactly one cycle. There is a unique path from vertex 1 to this cycle, first meeting it at k, say (k may equal 1). Let i and j be the two neighbors of k in the cycle, with i the larger of the two. Delete the edge k<->j thereby forming a tree (in which j is a descendant of i) and take (i,j) as the marked inversion. To reverse this map, create a cycle by joining the smaller element of the marked inversion to the parent of the larger element. a(n) = binomial(n-1,2)*A129137(n). This is because, on the above marked trees, the marked inversion is uniformly distributed over 2-element subsets of {2,3,...,n} and so a(n)/binomial(n-1,2) is the number of trees on [n] (rooted at 1) for which (3,2) is an inversion. - David Callan, Mar 30 2007

Examples

			E.g., a(4)=15 because there are three different (labeled) 4-cycles and 12 different labeled graphs with a 3-cycle and an attached, external vertex.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.
  • C. L. Mallows, Letter to N. J. A. Sloane, 1980.
  • R. J. Riddell, Contributions to the theory of condensation, Dissertation, Univ. of Michigan, Ann Arbor, 1951.

Crossrefs

A diagonal of A343088.
Cf. A000272 = labeled trees on n nodes; connected labeled graphs with n nodes and n+k edges for k=0..8: this sequence, A061540, A061541, A061542, A061543, A096117, A061544, A096150, A096224.
Cf. A001429 (unlabeled case), A052121.
For any number of edges we have A001187, unlabeled A001349.
This is the connected and covering case of A116508.
For #edges <= #nodes we have A129271, covering A367869.
For #edges > #nodes we have A140638, covering A367868.
This is the connected case of A367862 and A367863, unlabeled A006649.
The version with loops is A368951, unlabeled A368983.
This is the covering case of A370317.
Counting only covering vertices gives A370318.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.

Programs

  • Maple
    egf:= -1/2*ln(1+LambertW(-x)) +1/2*LambertW(-x) -1/4*LambertW(-x)^2:
    a:= n-> n!*coeff(series(egf, x, n+3), x, n):
    seq(a(n), n=1..25);  # Alois P. Heinz, Mar 27 2013
  • Mathematica
    nn=20; t=Sum[n^(n-1) x^n/n!, {n,1,nn}]; Drop[Range[0,nn]! CoefficientList[Series[Log[1/(1-t)]/2-t^2/4-t/2, {x,0,nn}], x], 1]  (* Geoffrey Critzer, Oct 07 2012 *)
    a[n_] := (n-1)!*n^n/2*Sum[1/(n^k*(n-k)!), {k, 3, n}]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Jan 15 2014, after Vladeta Jovovic *)
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[#]==n&&Length[csm[#]]<=1&]],{n,0,5}] (* Gus Wiseman, Feb 19 2024 *)
  • Sage
    # Warning: Floating point calculation. Adjust precision as needed!
    from mpmath import mp, chop, gammainc
    mp.dps = 200; mp.pretty = True
    for n in (1..100):
        print(chop((n^(n-2)*(1-3*n)+exp(n)*gammainc(n+1, n)/n)/2))
    # Peter Luschny, Jan 27 2016

Formula

The number of labeled connected graphs with n nodes and m edges is Sum_{k=1..n} (-1)^(k+1)/k*Sum_{n_1+n_2+..n_k=n, n_i>0} n!/(Product_{i=1..k} (n_i)!)* binomial(s, m), s=Sum_{i..k} binomial(n_i, 2). - Vladeta Jovovic, Apr 10 2001
E.g.f.: (1/2) Sum_{k>=3} T(x)^k/k, with T(x) = Sum_{n>=1} n^(n-1)/n! x^n. R. J. Riddell's thesis contains a closed-form expression for the number of connected graphs with m nodes and n edges. The present series applies to the special case m=n.
E.g.f.: -1/2*log(1+LambertW(-x))+1/2*LambertW(-x)-1/4*LambertW(-x)^2. - Vladeta Jovovic, Jul 09 2001
Asymptotic expansion (with xi=sqrt(2*Pi)): n^(n-1/2)*[xi/4-7/6*n^(-1/2)+xi/48* n^(-1)+131/270*n^(-3/2)+xi/1152*n^(-2)+4/2835*n^(-5/2)+O(n^(-3))]. - Keith Briggs, Aug 16 2004
Row sums of A098909: a(n) = (n-1)!*n^n/2*Sum_{k=3..n} 1/(n^k*(n-k)!). - Vladeta Jovovic, Oct 26 2004
a(n) = Sum_{k=0..C(n-1,2)} k*A052121(n,k). - Alois P. Heinz, Nov 29 2015
a(n) = (n^(n-2)*(1-3*n)+exp(n)*Gamma(n+1,n)/n)/2. - Peter Luschny, Jan 27 2016
a(n) = A062734(n,n+1) = A123527(n,n). - Gus Wiseman, Feb 19 2024

Extensions

More terms from Vladeta Jovovic, Jul 09 2001

A367902 Number of sets of nonempty subsets of {1..n} satisfying a strict version of the axiom of choice.

Original entry on oeis.org

1, 2, 7, 61, 1771, 187223, 70038280, 90111497503, 397783376192189
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(2) = 7 set-systems:
  {}
  {{1}}
  {{2}}
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
		

Crossrefs

The version for simple graphs is A133686, covering A367869.
The version without singletons is A367770.
The complement allowing empty edges is A367901.
The complement is A367903, without singletons A367769, ranks A367907.
For a unique choice we have A367904, ranks A367908.
These set-systems have ranks A367906.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]], Select[Tuples[#],UnsameQ@@#&]!={}&]],{n,0,3}]

Formula

a(n) = A370636(2^n-1). - Alois P. Heinz, Mar 09 2024

Extensions

a(6)-a(8) from Christian Sievers, Jul 25 2024

A367905 Number of ways to choose a sequence of different binary indices, one of each binary index of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 2, 1, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 2, 1, 1, 3, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 1, 4, 1, 1, 0, 2, 1, 1, 0, 2, 0, 0, 0, 4, 1, 2, 0, 3, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			352 has binary indices of binary indices {{2,3},{1,2,3},{1,4}}, and there are six possible choices (2,1,4), (2,3,1), (2,3,4), (3,1,4), (3,2,1), (3,2,4), so a(352) = 6.
		

Crossrefs

A version for multisets is A367771, see A355529, A355740, A355744, A355745.
Positions of positive terms are A367906.
Positions of zeros are A367907.
Positions of ones are A367908.
Positions of terms > 1 are A367909.
Positions of first appearances are A367910, sorted A367911.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
    Table[Length[Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]],{n,0,100}]
  • Python
    from itertools import count, islice, product
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen(): #generator of terms
        for n in count(0):
            c = 0
            for j in list(product(*[bin_i(k) for k in bin_i(n)])):
                if len(set(j)) == len(j):
                    c += 1
            yield c
    A367905_list = list(islice(a_gen(), 90)) # John Tyler Rascoe, May 22 2024

A368100 Numbers of which it is possible to choose a different prime factor of each prime index.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 39, 41, 43, 47, 51, 53, 55, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 119, 123, 127, 129, 131, 137, 139, 141, 143, 145, 149, 151, 155, 157, 161, 163
Offset: 1

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 2849 are {4,5,12}, with prime factors {{2,2},{5},{2,2,3}}, and of the two choices (2,5,2) and (2,5,3) the latter has all different terms, so 2849 is in the sequence.
The terms together with their prime indices of prime indices begin:
   1: {}
   3: {{1}}
   5: {{2}}
   7: {{1,1}}
  11: {{3}}
  13: {{1,2}}
  15: {{1},{2}}
  17: {{4}}
  19: {{1,1,1}}
  23: {{2,2}}
  29: {{1,3}}
  31: {{5}}
  33: {{1},{3}}
  35: {{2},{1,1}}
  37: {{1,1,2}}
  39: {{1},{1,2}}
		

Crossrefs

The complement is A355529, odd A355535, binary A367907.
Positions of positive terms in A367771.
The version for binary indices is A367906, positive positions in A367905.
For a unique choice we have A368101, binary A367908.
The version for divisors instead of factors is A368110, complement A355740.
A058891 counts set-systems, covering A003465, connected A323818.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], Select[Tuples[prix/@prix[#]], UnsameQ@@#&]!={}&]

A367907 Numbers n such that it is not possible to choose a different binary index of each binary index of n.

Original entry on oeis.org

7, 15, 23, 25, 27, 29, 30, 31, 39, 42, 43, 45, 46, 47, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 71, 75, 77, 78, 79, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 99, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 1

Views

Author

Gus Wiseman, Dec 11 2023

Keywords

Comments

Also BII-numbers of set-systems (sets of nonempty sets) contradicting a strict version of the axiom of choice.
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The set-system {{1},{2},{1,2},{1,3}} with BII-number 23 has choices (1,2,1,1), (1,2,1,3), (1,2,2,1), (1,2,2,3), but none of these has all different elements, so 23 is in the sequence.
The terms together with the corresponding set-systems begin:
   7: {{1},{2},{1,2}}
  15: {{1},{2},{1,2},{3}}
  23: {{1},{2},{1,2},{1,3}}
  25: {{1},{3},{1,3}}
  27: {{1},{2},{3},{1,3}}
  29: {{1},{1,2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  31: {{1},{2},{1,2},{3},{1,3}}
  39: {{1},{2},{1,2},{2,3}}
  42: {{2},{3},{2,3}}
  43: {{1},{2},{3},{2,3}}
  45: {{1},{1,2},{3},{2,3}}
  46: {{2},{1,2},{3},{2,3}}
  47: {{1},{2},{1,2},{3},{2,3}}
  51: {{1},{2},{1,3},{2,3}}
		

Crossrefs

These set-systems are counted by A367903, non-isomorphic A368094.
Positions of zeros in A367905, firsts A367910, sorted A367911.
The complement is A367906.
If there is one unique choice we get A367908, counted by A367904.
If there are multiple choices we get A367909, counted by A367772.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100], Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]=={}&]
  • Python
    from itertools import count, islice, product
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen(): #generator of terms
        for n in count(1):
            p = list(product(*[bin_i(k) for k in bin_i(n)]))
            x = len(p)
            for j in range(x):
                if len(set(p[j])) == len(p[j]): break
                if j+1 == x: yield(n)
    A367907_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Feb 10 2024

Formula

A367863 Number of n-vertex labeled simple graphs with n edges and no isolated vertices.

Original entry on oeis.org

1, 0, 0, 1, 15, 222, 3760, 73755, 1657845, 42143500, 1197163134, 37613828070, 1295741321875, 48577055308320, 1969293264235635, 85852853154670693, 4005625283891276535, 199166987259400191480, 10513996906985414443720, 587316057411626070658200, 34612299496604684775762261
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2023

Keywords

Examples

			Non-isomorphic representatives of the a(4) = 15 graphs:
  {{1,2},{1,3},{1,4},{2,3}}
  {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

The connected case is A057500, unlabeled A001429.
The unlabeled version is A006649.
The non-covering version is A116508.
For set-systems we have A367916, ranks A367917.
A001187 counts connected graphs, A001349 unlabeled.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A133686 = graphs satisfy strict AoC, connected A129271, covering A367869.
A143543 counts simple labeled graphs by number of connected components.
A323818 counts connected set-systems, unlabeled A323819, ranks A326749.
A367867 = graphs contradict strict AoC, connected A140638, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Length[#]==n&]],{n,0,5}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(binomial(k,2), n)) \\ Andrew Howroyd, Dec 29 2023

Formula

Binomial transform is A367862.
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(binomial(k,2), n). - Andrew Howroyd, Dec 29 2023

Extensions

Terms a(8) and beyond from Andrew Howroyd, Dec 29 2023

A367906 Numbers k such that it is possible to choose a different binary index of each binary index of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 26, 28, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 48, 49, 50, 52, 56, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 80, 81, 82, 84, 88, 96, 97, 98, 100, 104, 112, 128, 129, 130, 131, 132
Offset: 1

Views

Author

Gus Wiseman, Dec 11 2023

Keywords

Comments

Also BII-numbers of set-systems (sets of nonempty sets) satisfying a strict version of the axiom of choice.
A binary index of k (row k of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number k to be obtained by taking the binary indices of each binary index of k. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The set-system {{2,3},{1,2,3},{1,4}} with BII-number 352 has choices such as (2,1,4) that satisfy the axiom, so 352 is in the sequence.
The terms together with the corresponding set-systems begin:
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  12: {{1,2},{3}}
  13: {{1},{1,2},{3}}
  14: {{2},{1,2},{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
		

Crossrefs

These set-systems are counted by A367902, non-isomorphic A368095.
Positions of positive terms in A367905, firsts A367910, sorted A367911.
The complement is A367907.
If there is one unique choice we get A367908, counted by A367904.
If there are multiple choices we get A367909, counted by A367772.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100], Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]!={}&]
  • Python
    from itertools import count, islice, product
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen(): #generator of terms
        for n in count(1):
            for j in list(product(*[bin_i(k) for k in bin_i(n)])):
                if len(set(j)) == len(j):
                    yield(n); break
    A367906_list = list(islice(a_gen(),100)) # John Tyler Rascoe, Dec 23 2023
Showing 1-10 of 111 results. Next