cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Rebecca Smith

Rebecca Smith's wiki page.

Rebecca Smith has authored 1 sequences.

A308726 The number of permutations of length n and tier at most 1, that is, the number of permutations of length n sortable by two passes through a stack where outputting the longest prefix matching the identity permutation is prioritized.

Original entry on oeis.org

1, 1, 2, 6, 24, 112, 556, 2811, 14234, 71808, 360568, 1803100, 8988924, 44719588, 222221416, 1103827306, 5484124128, 27265300504, 135695994964, 676228846370, 3374996253420, 16871826671280, 84488005896720, 423828619074900, 2129868537725916, 10722045181336524
Offset: 0

Author

Rebecca Smith, Jun 20 2019

Keywords

Comments

This counts the permutations of length n that avoid the permutations 24153, 24513, 24531, 34251, 35241, 42513, 42531, 45231, 261453, 231564, 523164.

References

  • Toufik Mansour, Howard Skogman, and Rebecca Smith. "Passing through a stack k times." Discrete Mathematics, Algorithms and Applications 11.01 (2019): 1950003.

Crossrefs

Cf. A122890 (sum of last two rows), A158830 (sum of first two rows).

Programs

  • Mathematica
    CoefficientList[Series[(2 + (2*x - 1)/Sqrt[1 - 4*x] - Sqrt[2*Sqrt[1 - 4*x] - 1])/(2*x), {x, 0, 25}], x] (* Vaclav Kotesovec, Jun 30 2019 *)

Formula

G.f.: (2 + (2*x-1)/sqrt(1-4*x) - sqrt(2*sqrt(1-4*x) - 1)) / (2*x). - Vaclav Kotesovec, Jun 30 2019
a(n) ~ 2^(4*n + 3/2) / (sqrt(Pi) * n^(3/2) * 3^(n + 1/2)). - Vaclav Kotesovec, Jun 30 2019
Conjecture: D-finite with recurrence: 3*n*(n-1)*(n+1)*a(n) -n*(n-1)*(67*n-101)*a(n-1) +2*(n-1)*(286*n^2-1112*n+1089)*a(n-2) +4*(-580*n^3+4200*n^2-10106*n+8049)*a(n-3) +24*(184*n^3-1784*n^2+5770*n-6221)*a(n-4) -96*(4*n-15)*(2*n-9)*(4*n-17)*a(n-5)=0. - R. J. Mathar, Jan 27 2020

Extensions

More terms from Vaclav Kotesovec, Jun 30 2019