cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A349079 Numbers k such that there exists m, 1 <= m <= k with the property that A000178(k) / m! is a square, where A000178(k) = k$ = 1!*2!*...*k! is the superfactorial of k.

Original entry on oeis.org

1, 2, 4, 8, 12, 14, 16, 18, 20, 24, 28, 32, 34, 36, 40, 44, 48, 52, 56, 60, 62, 64, 68, 72, 76, 80, 84, 88, 92, 96, 98, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 142, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 194, 196, 200, 204, 208, 212, 216, 220, 224, 228
Offset: 1

Views

Author

Bernard Schott, Nov 07 2021

Keywords

Comments

If k is a term, then A348692(k) lists integers m such that k$ / m! is a square; and for each k, there exist only one (A349080) or two (A349081) such integers m.
See A348692 for further information, links and references about Olympiads.
Except for 1, all terms are even, and, when k is such an even term, corresponding m belong(s) to {k/2 - 2, k/2 - 1, k/2, k/2 + 1, k/2 + 2}.
This sequence is the union of {1} and of three infinite and disjoint subsequences:
-> A008586, so every positive multiple of 4 is a term and in this case, for k=4*q, (k$)/(k/2)! = ( 2^(k/4) * Product_{j=1..k/2} ((2j-1)!) )^2 (see example 4).
-> A060626, so every k = 4*q^2 - 2 (q >= 1) is a term (see examples 2 and 14).
-> 2*A055792 = {k = 2q^2 with q>1 in A001541} = {18, 578, ...} (see example 18).

Examples

			2 is a term as 2$ / 2! = 1^2.
4 is a term as 4$ / 2! = 12^2.
14 is a term as 14$ / 8! = 1309248519599593818685440000000^2 and also 14$ / 9! = 436416173199864606228480000000^2.
18 is a term as 18$ / 7! = 29230177671473293820176594405114531928195727360000000000000^2.
		

Crossrefs

Programs

  • Mathematica
    supfact[n_] := supfact[n] = BarnesG[n + 2]; fact[n_] := fact[n] = n!; q[k_] := AnyTrue[Range[k], IntegerQ @ Sqrt[supfact[k]/fact[#]] &]; Select[Range[230], q] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    f(n) = prod(k=2, n, k!); \\ A000178
    isok(k) = my(sf=f(k)); for (m=1, k, if (issquare(sf/m!), return(1))); \\ Michel Marcus, Nov 08 2021

A349081 Numbers k for which there exist two integers m with 1 <= m_1 < m_2 <= k such that A000178(k) / m! is a square, where A000178(k) = k$ = 1!*2!*...*k! is the superfactorial of k.

Original entry on oeis.org

8, 14, 16, 32, 48, 72, 96, 128, 160, 200, 240, 288, 336, 392, 448, 512, 574, 576, 648, 720, 800, 880, 968, 1056, 1152, 1248, 1352, 1456, 1568, 1680, 1800, 1920, 2048, 2176, 2312, 2448, 2592, 2736, 2888, 3040, 3200, 3360, 3528, 3696, 3872, 4048, 4232, 4416, 4608, 4800, 5000
Offset: 1

Views

Author

Bernard Schott, Dec 01 2021

Keywords

Comments

This sequence is the union of three infinite and disjoint subsequences:
-> Numbers k = 8t^2 > 0 (A139098); for these numbers, m_1 = k/2 - 1 = 4t^2-1 < m_2 = k/2 = 4t^2 (see example for k = 8).
-> Numbers k = 8t*(t+1) (A035008); for these numbers, m_1 = k/2 = 4t(t+1) < m_2 = k/2 + 1 = (2t+1)^2 (see example for k = 16).
-> Even numbers of the form 2t^2-4, t>1 in A001541 (A349766); for these numbers, m_1 = k/2 + 1 = t^2 - 1 < m_2 = k/2 + 2 = t^2 (see example for k = 14).
See A348692 for further information.

Examples

			For k = 8, 8$ / 2! is not a square, but m_1 = 3 because 8$ / 3! = 29030400^2 and m_2 = 4 because 8$ / 4! = 14515200^2.
For k = 14, m_1 = 8 because 14$ / 8! = 1309248519599593818685440000000^2 and m_2 = 9 because 14$ / 9! = 436416173199864606228480000000^2.
For k = 16, m_1 = 8 because 16$ / 8! = 6848282921689337839624757371207680000000000^2 and m_2 = 9 because 16$ / 9! = 2282760973896445946541585790402560000000000^2.
		

Crossrefs

Subsequence of A349079.

Programs

  • Mathematica
    Do[j=0;l=1;g=BarnesG[k+2];While[j<2&&l<=k,If[IntegerQ@Sqrt[g/l!],j++];l++];If[j==2,Print@k],{k,5000}] (* Giorgos Kalogeropoulos, Dec 02 2021 *)
  • PARI
    sf(n) = prod(k=2, n, k!); \\ A000178
    isok(m) = if (!(m%2), my(s=sf(m)); #select(issquare, vector(4, k, s/(m/2+k-2)!), 1) == 2); \\ Michel Marcus, Dec 04 2021

A349496 Numbers of the form 4*t^2-2 (A060626) when t >= 1 is an integer that is not a term in A001542.

Original entry on oeis.org

2, 34, 62, 98, 142, 194, 254, 322, 398, 482, 674, 782, 898, 1022, 1154, 1294, 1442, 1598, 1762, 1934, 2114, 2302, 2498, 2702, 2914, 3134, 3362, 3598, 3842, 4094, 4354, 4622, 4898, 5182, 5474, 5774, 6082, 6398, 6722, 7054, 7394, 7742, 8098, 8462, 8834, 9214, 9602, 9998, 10402
Offset: 1

Views

Author

Bernard Schott, Nov 21 2021

Keywords

Comments

Equivalently: numbers k for which there exists only one integer m with here m = k/2 + 1 such that A000178(k) / m! is a square, where A000178(k) = k$ = 1!*2!*...*k! is the superfactorial of k.

Examples

			A060626(3) = 34 and 3 is not a term in A001542; also 34$ / 18! is a square, hence 34 is a term.
		

Crossrefs

Subsequence of A060626 and of A349080.

Programs

  • PARI
    isok(m) = my(x=(m+2)/4, y); issquare(x, &y) && (denominator(y)==1) && !issquare(2*x+1); \\ Michel Marcus, Nov 22 2021

A349766 Numbers of the form 2*t^2-4 when t > 1 is a term in A001541.

Original entry on oeis.org

14, 574, 19598, 665854, 22619534, 768398398, 26102926094, 886731088894, 30122754096398, 1023286908188734, 34761632124320654, 1180872205318713598, 40114893348711941774, 1362725501650887306814, 46292552162781456489998, 1572584048032918633353214, 53421565080956452077519374
Offset: 1

Views

Author

Bernard Schott, Dec 04 2021

Keywords

Comments

Equivalently: integers k such that k$ / (k/2+1)! and k$ / (k/2+2)! are both squares when A000178 (k) = k$ = 1!*2!*...*k! is the superfactorial of k (see A348692 for further information).
The 3 subsequences of A349081 are A035008, A139098 and this one.

Examples

			A001541(1) = 3, then for t = 3, 2*t^2-4 = 14; also for k = 14, 14$ / 8! = 1309248519599593818685440000000^2 and 14$ / 9! = 436416173199864606228480000000^2. Hence, 14 is a term.
		

Crossrefs

Programs

  • Maple
    with(orthopoly):
    sequence = (2*T(n,3)^2-4, n=1..20);
  • Mathematica
    (2*#^2 - 4) & /@ LinearRecurrence[{6, -1}, {3, 17}, 17] (* Amiram Eldar, Dec 04 2021 *)
    LinearRecurrence[{35, -35, 1},{14, 574, 19598},17] (* Ray Chandler, Mar 01 2024 *)
  • PARI
    a(n) = my(t=subst(polchebyshev(n), 'x, 3)); 2*t^2-4; \\ Michel Marcus, Dec 04 2021

Formula

a(n) = 2*(cosh(2*n*arcsinh(1)))^2 - 4.
a(n) = 16*A001110(n) - 2. - Hugo Pfoertner, Dec 04 2021

A356639 Number of integer sequences b with b(1) = 1, b(m) > 0 and b(m+1) - b(m) > 0, of length n which transform under the map S into a nonnegative integer sequence. The transform c = S(b) is defined by c(m) = Product_{k=1..m} b(k) / Product_{k=2..m} (b(k) - b(k-1)).

Original entry on oeis.org

1, 1, 3, 17, 155, 2677, 73327, 3578339, 329652351
Offset: 1

Views

Author

Thomas Scheuerle, Aug 19 2022

Keywords

Comments

This sequence can be calculated by a recursive algorithm:
Let B1 be an array of finite length, the "1" denotes that it is the first generation. Let B1' be the reversed version of B1. Let C be the element-wise product C = B1 * B1'. Then B2 is a concatenation of taking each element of B1 and add all divisors of the corresponding element in C. If we start with B1 = {1} then we get this sequence of arrays: B2 = {2}, B3 = {3, 4, 6}, ... . a(n) is the length of the array Bn. In short the length of Bn+1 and so a(n+1) is the sum over A000005(Bn * Bn').
The transform used in the definition of this sequence is its own inverse, so if c = S(b) then b = S(c). The eigensequence is 2^n = S(2^n).
There exist some transformation pairs of infinite sequences in the database:
A026549 <--> A038754; A100071 <--> A001405; A058295 <--> A------;
A111286 <--> A098011; A093968 <--> A205825; A166447 <--> A------;
A079352 <--> A------; A082458 <--> A------; A008233 <--> A264635;
A138278 <--> A------; A006501 <--> A264557; A336496 <--> A------;
A019464 <--> A------; A062112 <--> A------; A171647 <--> A359039;
A279312 <--> A------; A031923 <--> A------.
These transformation pairs are conjectured:
A137326 <--> A------; A066332 <--> A300902; A208147 <--> A308546;
A057895 <--> A------; A349080 <--> A------; A019442 <--> A------;
A349079 <--> A------.
("A------" means not yet in the database.)
Some sequences in the lists above may need offset adjustment to force a beginning with 1,2,... in the transformation.
If we allowed signed rational numbers, further interesting transformation pairs could be observed. For example, 1/n will transform into factorials with alternating sign. 2^(-n) transforms into ones with alternating sign and 1/A000045(n) into A000045 with alternating sign.

Examples

			a(4) = 17. The 17 transformation pairs of length 4 are:
  {1, 2, 3, 4}  = S({1, 2, 6, 24}).
  {1, 2, 3, 5}  = S({1, 2, 6, 15}).
  {1, 2, 3, 6}  = S({1, 2, 6, 12}).
  {1, 2, 3, 9}  = S({1, 2, 6, 9}).
  {1, 2, 3, 12} = S({1, 2, 6, 8}).
  {1, 2, 3, 21} = S({1, 2, 6, 7}).
  {1, 2, 4, 5}  = S({1, 2, 4, 20}).
  {1, 2, 4, 6}  = S({1, 2, 4, 12}).
  {1, 2, 4, 8}  = S({1, 2, 4, 8}).
  {1, 2, 4, 12} = S({1, 2, 4, 6}).
  {1, 2, 4, 20} = S({1, 2, 4, 5}).
  {1, 2, 6, 7}  = S({1, 2, 3, 21}).
  {1, 2, 6, 8}  = S({1, 2, 3, 12}).
  {1, 2, 6, 9}  = S({1, 2, 3, 9}).
  {1, 2, 6, 12} = S({1, 2, 3, 6}).
  {1, 2, 6, 15} = S({1, 2, 3, 5}).
  {1, 2, 6, 24} = S({1, 2, 3, 4}).
b(1) = 1 by definition, b(2) = 1+1 as 1 has only 1 as divisor.
a(3) = A000005(b(2)*b(2)) = 3.
The divisors of b(2) are 1,2,4. So b(3) can be b(2)+1, b(2)+2 and b(2)+4.
a(4) = A000005((b(2)+1)*(b(2)+4)) + A000005((b(2)+2)*(b(2)+2)) + A000005((b(2)+4)*(b(2)+1)) = 17.
		

Crossrefs

Showing 1-5 of 5 results.