cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A358033 a(1) = 2; a(n) - a(n-1) = A093803(a(n-1)), the largest odd proper divisor of a(n-1).

Original entry on oeis.org

2, 3, 4, 5, 6, 9, 12, 15, 20, 25, 30, 45, 60, 75, 100, 125, 150, 225, 300, 375, 500, 625, 750, 1125, 1500, 1875, 2500, 3125, 3750, 5625, 7500, 9375, 12500, 15625, 18750, 28125, 37500, 46875, 62500, 78125, 93750, 140625, 187500, 234375, 312500, 390625, 468750
Offset: 1

Views

Author

Eric Angelini and Gavin Lupo, Oct 25 2022

Keywords

Examples

			a(1) = 2.
a(2) = 3. The only proper divisor of 2 is 1; 2 + 1 = 3.
a(3) = 4. The only proper divisor of 3 is 1; 3 + 1 = 4.
...
a(8) = 15.
a(9) = 20. Proper divisors of 15 are 1, 3, 5; largest odd proper divisor = 5; 15 + 5 = 20.
		

Crossrefs

Cf. A093803, A000792 (with largest proper divisor instead).

Programs

  • PARI
    f(n) = my(x=if(n==1, 1, n/factor(n)[1, 1])); x >> valuation(x, 2); \\ Michel Marcus, Oct 26 2022
    lista(nn) = my(va = vector(nn)); va[1] = 2; for (n=2, nn, va[n] = va[n-1] + f(va[n-1]);); va; \\ Michel Marcus, Oct 26 2022
  • Python
    a_n = 2
    result = [2]
    for n in range(30):
        temp = []
        for i in range(1, a_n):
            if a_n % i == 0:
                if (i % 2 != 0) and (i != a_n):
                    temp.append(i)
        result.append(a_n + max(temp))
        a_n = a_n + max(temp)
    print(result)
    

Formula

a(n+1) - a(n) = A056487(floor((n-2)/3)), for n > 2. This works because A056487(n+3) = A056487(n+2)*A056487(n+1)/A056487(n). - Thomas Scheuerle, Oct 26 2022
Showing 1-1 of 1 results.