A098694
Double-superfactorials: a(n) = Product_{k=1..n} (2k)!.
Original entry on oeis.org
1, 2, 48, 34560, 1393459200, 5056584744960000, 2422112183371431936000000, 211155601241022491077587763200000000, 4417964278440225627098723475313498521600000000000
Offset: 0
-
[&*[ Factorial(2*k): k in [0..n] ]: n in [0..10]]; // Vincenzo Librandi, Dec 11 2016
-
Table[Product[(2k)!,{k,1,n}],{n,0,10}] (* Vaclav Kotesovec, Nov 13 2014 *)
-
a(n) = prod(k=1, n, (2*k)!); \\ Michel Marcus, Dec 11 2016
-
from math import prod
def A098694(n): return prod(((k+1)*((k<<1)+1)<<1)**(n-k) for k in range(1,n+1))<Chai Wah Wu, Nov 26 2023
A100733
a(n) = (4*n)!.
Original entry on oeis.org
1, 24, 40320, 479001600, 20922789888000, 2432902008176640000, 620448401733239439360000, 304888344611713860501504000000, 263130836933693530167218012160000000, 371993326789901217467999448150835200000000, 815915283247897734345611269596115894272000000000
Offset: 0
A268504
a(n) = Product_{k=0..n} (3*k)!.
Original entry on oeis.org
1, 6, 4320, 1567641600, 750902834626560000, 981936389699695364014080000000, 6286723722110812136775527266768650240000000000, 321194638135877430211257700556824829511701622266265600000000000000
Offset: 0
-
Table[Product[(3*k)!,{k,0,n}],{n,0,10}]
-
{a(n) = prod(k=1, n, (3*k)!)} \\ Seiichi Manyama, Jul 06 2019
A268506
a(n) = Product_{k=0..n} (5*k)!.
Original entry on oeis.org
1, 120, 435456000, 569434649591808000000, 1385378702517271000054360965120000000000, 21488900044302744250061179567064173417691432878080000000000000000
Offset: 0
-
Table[Product[(5*k)!,{k,0,n}],{n,0,8}]
-
{a(n) = prod(k=1, n, (5*k)!)} \\ Seiichi Manyama, Jul 06 2019
A271946
a(n) = Product_{k=0..n} (6*k)!.
Original entry on oeis.org
1, 720, 344881152000, 2208058019165981638656000000, 1369986068925795885347091500568179543900160000000000, 363392722685428853076589064611759104109572860599125858715484081356800000000000000000
Offset: 0
-
Table[Product[(6*k)!,{k,0,n}],{n,0,8}]
-
{a(n) = prod(k=1, n, (6*k)!)} \\ Seiichi Manyama, Jul 06 2019
A271947
a(n) = Product_{k=0..n} (7*k)!.
Original entry on oeis.org
1, 5040, 439378587648000, 22448266013011335649028997120000000, 6844214664110424043644485692109939233534721371668480000000000000
Offset: 0
-
Table[Product[(7*k)!,{k,0,n}],{n,0,8}]
-
{a(n) = prod(k=1, n, (7*k)!)} \\ Seiichi Manyama, Jul 06 2019
A262261
a(n) = Product_{k=0..n} binomial(4*k,k).
Original entry on oeis.org
1, 4, 112, 24640, 44844800, 695273779200, 93581069585203200, 110803729631663996928000, 1165466869384731418887782400000, 109720873815210197693149787062272000000, 93006053830822450607559730484293052399616000000
Offset: 0
-
Table[Product[Binomial[4*k,k],{k,0,n}],{n,0,10}]
A294322
a(n) = Product_{k=0..n} (4*k + 3)!.
Original entry on oeis.org
6, 30240, 1207084032000, 1578472848668491776000000, 192013488168893760607534429765632000000000, 4963935910233933921764132479991824059486720994836480000000000000
Offset: 0
-
Table[Product[(4*k + 3)!, {k, 0, n}] , {n, 0, 10}]
A294320
a(n) = Product_{k=0..n} (4*k + 1)!.
Original entry on oeis.org
1, 120, 43545600, 271159356948480000, 96447974277170077976494080000000, 4927617876373416030299815278723491640115200000000000, 76433315893700635598991132508610825923227961061372903345356800000000000000000
Offset: 0
-
Table[Product[(4*k + 1)!, {k, 0, n}] , {n, 0, 10}]
A294321
a(n) = Product_{k=0..n} (4*k + 2)!.
Original entry on oeis.org
2, 1440, 5225472000, 455547719673446400000, 2916586742141623158009180979200000000, 3278245620793706216637861108629164518335840256000000000000
Offset: 0
-
Table[Product[(4*k + 2)!, {k, 0, n}] , {n, 0, 10}]
Showing 1-10 of 12 results.
Comments