A098694
Double-superfactorials: a(n) = Product_{k=1..n} (2k)!.
Original entry on oeis.org
1, 2, 48, 34560, 1393459200, 5056584744960000, 2422112183371431936000000, 211155601241022491077587763200000000, 4417964278440225627098723475313498521600000000000
Offset: 0
-
[&*[ Factorial(2*k): k in [0..n] ]: n in [0..10]]; // Vincenzo Librandi, Dec 11 2016
-
Table[Product[(2k)!,{k,1,n}],{n,0,10}] (* Vaclav Kotesovec, Nov 13 2014 *)
-
a(n) = prod(k=1, n, (2*k)!); \\ Michel Marcus, Dec 11 2016
-
from math import prod
def A098694(n): return prod(((k+1)*((k<<1)+1)<<1)**(n-k) for k in range(1,n+1))<Chai Wah Wu, Nov 26 2023
A268504
a(n) = Product_{k=0..n} (3*k)!.
Original entry on oeis.org
1, 6, 4320, 1567641600, 750902834626560000, 981936389699695364014080000000, 6286723722110812136775527266768650240000000000, 321194638135877430211257700556824829511701622266265600000000000000
Offset: 0
-
Table[Product[(3*k)!,{k,0,n}],{n,0,10}]
-
{a(n) = prod(k=1, n, (3*k)!)} \\ Seiichi Manyama, Jul 06 2019
A100734
a(n) = (5*n)!.
Original entry on oeis.org
1, 120, 3628800, 1307674368000, 2432902008176640000, 15511210043330985984000000, 265252859812191058636308480000000, 10333147966386144929666651337523200000000
Offset: 0
A268505
a(n) = Product_{k=0..n} (4*k)!.
Original entry on oeis.org
1, 24, 967680, 463520268288000, 9698137182219213471744000000, 23594617426193665303453830729600860160000000000, 14639242671589099207353038379393488170313478620292159897600000000000000
Offset: 0
-
Table[Product[(4*k)!,{k,0,n}],{n,0,8}]
-
{a(n) = prod(k=1, n, (4*k)!)} \\ Seiichi Manyama, Jul 06 2019
A271946
a(n) = Product_{k=0..n} (6*k)!.
Original entry on oeis.org
1, 720, 344881152000, 2208058019165981638656000000, 1369986068925795885347091500568179543900160000000000, 363392722685428853076589064611759104109572860599125858715484081356800000000000000000
Offset: 0
-
Table[Product[(6*k)!,{k,0,n}],{n,0,8}]
-
{a(n) = prod(k=1, n, (6*k)!)} \\ Seiichi Manyama, Jul 06 2019
A271947
a(n) = Product_{k=0..n} (7*k)!.
Original entry on oeis.org
1, 5040, 439378587648000, 22448266013011335649028997120000000, 6844214664110424043644485692109939233534721371668480000000000000
Offset: 0
-
Table[Product[(7*k)!,{k,0,n}],{n,0,8}]
-
{a(n) = prod(k=1, n, (7*k)!)} \\ Seiichi Manyama, Jul 06 2019
A262261
a(n) = Product_{k=0..n} binomial(4*k,k).
Original entry on oeis.org
1, 4, 112, 24640, 44844800, 695273779200, 93581069585203200, 110803729631663996928000, 1165466869384731418887782400000, 109720873815210197693149787062272000000, 93006053830822450607559730484293052399616000000
Offset: 0
-
Table[Product[Binomial[4*k,k],{k,0,n}],{n,0,10}]
A294324
a(n) = Product_{k=0..n} (5*k + 2)!.
Original entry on oeis.org
2, 10080, 4828336128000, 1717378459351319052288000000, 1930334638180469242638816526565470371840000000000, 21019161870767674789722561439867977128887689291877548419973120000000000000000
Offset: 0
-
Table[Product[(5*k + 2)!, {k, 0, n}] , {n, 0, 10}]
FoldList[Times,(5Range[0,10]+2)!] (* Harvey P. Dale, Aug 11 2024 *)
A294325
a(n) = Product_{k=0..n} (5*k + 3)!.
Original entry on oeis.org
6, 241920, 1506440871936000, 9644797427717007797649408000000, 249337464544494851133170653103408676989829120000000000, 76020086814652932482688746849816272353956621412690696880710462996480000000000000000
Offset: 0
-
Table[Product[(5*k + 3)!, {k, 0, n}] , {n, 0, 10}]
A294326
a(n) = Product_{k=0..n} (5*k + 4)!.
Original entry on oeis.org
24, 8709120, 759246199455744000, 92358580167818066670290731008000000, 57303733451473984666829812178837795780510487674880000000000
Offset: 0
-
Table[Product[(5*k + 4)!, {k, 0, n}] , {n, 0, 10}]
FoldList[Times,(5*Range[0,5]+4)!] (* Harvey P. Dale, Sep 27 2018 *)
Showing 1-10 of 13 results.
Comments