cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A100733 a(n) = (4*n)!.

Original entry on oeis.org

1, 24, 40320, 479001600, 20922789888000, 2432902008176640000, 620448401733239439360000, 304888344611713860501504000000, 263130836933693530167218012160000000, 371993326789901217467999448150835200000000, 815915283247897734345611269596115894272000000000
Offset: 0

Views

Author

Ralf Stephan, Dec 08 2004

Keywords

Comments

From Karol A. Penson, Jun 11 2009: (Start)
Integral representation of a(n) as n-th moment of a positive function W(x) = (1/4)*exp(-x^(1/4))/x^(3/4) on the positive axis:
a(n) = Integral_{x=0..oo} x^n*W(x) dx = Integral_{x=0..oo} x^n*(1/4)*exp(-x^(1/4))/x^(3/4) dx, n >= 0.
This is the solution of the Stieltjes moment problem with the moments a(n), n >= 0.
As the moments a(n) grow very rapidly this suggests, but does not prove, that this solution may not be unique.
This is indeed the case as by construction the following "doubly" infinite family:
V(k,a,x) = (1/4)*exp(-x^(1/4))*(a*sin((3/4)*Pi*k + tan((1/4)*Pi*k)*x^(1/4)) + 1)/x^(3/4),
with the restrictions k=+-1,+-2,..., abs(a) < 1 is still positive on 0 <= x < infinity and has moments a(n).
(End)

Crossrefs

Programs

Formula

E.g.f.: 1/(1-x^4).
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ sqrt(Pi)*2^(8*n+3/2)*n^(4*n+1/2)/exp(4*n).
Sum_{n>=0} 1/a(n) = (cos(1) + cosh(1))/2 = 1.04169147034169174... = A332890. (End)
Sum_{n>=0} (-1)^n/a(n) = cos(1/sqrt(2))*cosh(1/sqrt(2)). - Amiram Eldar, Feb 14 2021

Extensions

More terms from Harvey P. Dale, Oct 03 2014

A268506 a(n) = Product_{k=0..n} (5*k)!.

Original entry on oeis.org

1, 120, 435456000, 569434649591808000000, 1385378702517271000054360965120000000000, 21488900044302744250061179567064173417691432878080000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 16 2016

Keywords

Comments

Partial products of A100734. - Michel Marcus, Jul 06 2019

Crossrefs

Programs

  • Mathematica
    Table[Product[(5*k)!,{k,0,n}],{n,0,8}]
  • PARI
    {a(n) = prod(k=1, n, (5*k)!)} \\ Seiichi Manyama, Jul 06 2019

Formula

a(n) ~ Gamma(1/5)^(3/5) * Gamma(2/5)^(2/5) * Gamma(3/5)^(1/5) * 2^(n/2 - 1/10) * Pi^(n/2 - 1/10) * 5^(23/60 + 3*n + 5*n^2/2) * exp(1/60 - 3*n - 15*n^2/4) * n^(41/60 + 3*n + 5*n^2/2) / A^(1/5), where A = A074962 is the Glaisher-Kinkelin constant.

A100732 a(n) = (3*n)!.

Original entry on oeis.org

1, 6, 720, 362880, 479001600, 1307674368000, 6402373705728000, 51090942171709440000, 620448401733239439360000, 10888869450418352160768000000, 265252859812191058636308480000000
Offset: 0

Views

Author

Ralf Stephan, Dec 08 2004

Keywords

Comments

a(n) equals (-1)^n times the determinant of the (3n+1) X (3n+1) matrix with consecutive integers from 1 to 3n+1 along the main diagonal, consecutive integers from 2 to 3n+1 along the superdiagonal, consecutive integers from 1 to 3n along the subdiagonal, and 1's everywhere else (see Mathematica code below). - John M. Campbell, Jul 12 2011

Crossrefs

Programs

  • Haskell
    a100732 = a000142 . a008585  -- Reinhard Zumkeller, Feb 19 2013
  • Magma
    [Factorial(3*n): n in [0..15]]; // Vincenzo Librandi, Sep 24 2011
    
  • Mathematica
    Table[(-1)^n*Det[Array[KroneckerDelta[#1, #2]*(#1 - 1) + KroneckerDelta[#1, #2 - 1]*(#1) + KroneckerDelta[#1, #2 + 1]*(#1 - 2) + 1 &, {3*n + 1, 3*n + 1}]], {n, 0, 24}] (* John M. Campbell, Jul 12 2011 *)
    (3Range[0,10])! (* Harvey P. Dale, Sep 23 2011 *)
  • Sage
    [factorial(3*n) for n in range(0, 11)] # Peter Luschny, Jun 06 2016
    

Formula

a(n) = A000142(A008585(n)).
E.g.f.: 1/(1-x^3).
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ sqrt(2*Pi)*3^(3*n+1/2)*n^(3*n+1/2)/exp(3*n).
Sum_{n>=0} 1/a(n) = (exp(3/2) + 2*cos(sqrt(3)/2))/(3*exp(1/2)) = A143819. (End)
Sum_{n>=0} (-1)^n/a(n) = (1 + 2*exp(3/2)*cos(sqrt(3)/2))/(3*e). - Amiram Eldar, Feb 14 2021
a(n) = A143084(2n,n). - Alois P. Heinz, Jul 12 2024

A195390 a(n) = (6*n)!.

Original entry on oeis.org

1, 720, 479001600, 6402373705728000, 620448401733239439360000, 265252859812191058636308480000000, 371993326789901217467999448150835200000000, 1405006117752879898543142606244511569936384000000000, 12413915592536072670862289047373375038521486354677760000000000
Offset: 0

Views

Author

Vincenzo Librandi, Sep 24 2011

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(6*n): n in [0..10]];
  • Mathematica
    (6*Range[0,10])! (* Harvey P. Dale, Dec 16 2013 *)

Formula

From Amiram Eldar, Apr 03 2021: (Start)
a(n) = A000142(A008588(n)).
Sum_{n>=0} 1/a(n) = A332892. (End)

A195391 a(n) = (7*n)!.

Original entry on oeis.org

1, 5040, 87178291200, 51090942171709440000, 304888344611713860501504000000, 10333147966386144929666651337523200000000, 1405006117752879898543142606244511569936384000000000, 608281864034267560872252163321295376887552831379210240000000000, 710998587804863451854045647463724949736497978881168458687447040000000000000
Offset: 0

Views

Author

Vincenzo Librandi, Sep 24 2011

Keywords

Crossrefs

Programs

A322252 a(0) = 1 and a(n) = (5*n)!/(5!*n!^5) for n > 0.

Original entry on oeis.org

1, 1, 945, 1401400, 2546168625, 5194672859376, 11423951396577720, 26478825654361766400, 63805953776276649848625, 158421985022100255941485000, 402789797982510165934296910320, 1044048983553856888083223814102400, 2749848597736878877579660426025283000
Offset: 0

Views

Author

Seiichi Manyama, Nov 30 2018

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [Factorial(5*n)/(120*Factorial(n)^5):n in [1..12]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    a[n_]:=(5*n)!/(5!*n!^5); Array[a, 20] (* or *) CoefficientList[Series[HypergeometricPFQ[{1/5, 2/5, 3/5, 4/5}, {1, 1, 1}, 3125 x]/(120 x) , {x, 0, 20}], x] (* Stefano Spezia, Dec 01 2018 *)

Formula

O.g.f.: F({1/5, 2/5, 3/5, 4/5}, {1, 1, 1}, 3125*x)/(120*x), where F is the generalized hypergeometric function. - Stefano Spezia, Dec 01 2018
a(n) = (1/5!)*A008978(n) for n >= 1. - Peter Bala, Feb 18 2020

A195392 a(n) = (8*n)!.

Original entry on oeis.org

1, 40320, 20922789888000, 620448401733239439360000, 263130836933693530167218012160000000, 815915283247897734345611269596115894272000000000, 12413915592536072670862289047373375038521486354677760000000000, 710998587804863451854045647463724949736497978881168458687447040000000000000
Offset: 0

Views

Author

Vincenzo Librandi, Sep 24 2011

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(8*n): n in [0..10]];
  • Mathematica
    (8*Range[0, 8])! (* Paolo Xausa, Aug 12 2025 *)

A269296 Decimal expansion of Sum_{k>=0} 1/(5k)!.

Original entry on oeis.org

1, 0, 0, 8, 3, 3, 3, 6, 0, 8, 9, 0, 7, 2, 9, 0, 2, 8, 9, 9, 7, 6, 4, 5, 3, 6, 6, 7, 3, 5, 4, 8, 3, 8, 7, 8, 6, 0, 7, 1, 0, 7, 7, 2, 8, 1, 5, 7, 9, 5, 4, 3, 1, 0, 2, 0, 0, 3, 0, 5, 9, 0, 7, 4, 9, 2, 7, 0, 7, 5, 5, 0, 4, 8, 4, 8, 1, 1, 1, 0, 8, 4, 1, 1, 4, 8, 5, 5, 9, 4, 1, 6, 1, 7, 0, 0, 6, 5, 7, 8, 1, 9, 2, 5, 2, 6, 8, 9, 9, 1, 9, 4, 6, 9, 7, 5, 7, 7, 4, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2016

Keywords

Comments

From Vaclav Kotesovec, Feb 24 2016: (Start)
Sum_{k>=0} 1/k! = A001113 = exp(1).
Sum_{k>=0} 1/(2k)! = A073743 = cosh(1).
Sum_{k>=0} 1/(3k)! = A143819 = (2*cos(sqrt(3)/2)*exp(-1/2) + exp(1))/3.
Sum_{k>=0} 1/(4k)! = (cos(1) + cosh(1))/2 = 1.0416914703416917479394211141...
(End)
For q integer >= 1, Sum_{m>=0} 1/(q*m)! = (1/q) * Sum_{k=1..q} exp(X_k) where X_1, X_2, ..., X_q are the q-th roots of unity. - Bernard Schott, Mar 02 2020
Continued fraction: 1 + 1/(120 - 120/(30241 - 30240/(360361 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (5*n)*(5*n - 1)*(5*n - 2)*(5*n - 3)*(5*n - 4) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Examples

			1 + 1/5! + 1/10! + 1/15! + ... = 1.008333608907290289976453667354838786...
		

Crossrefs

Cf. A100734.
Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), A143819 (Sum 1/(3k)!), A332890 (Sum 1/(4k)!), this sequence (Sum 1/(5k)!), A332892 (Sum 1/(6k)!), A346441.

Programs

  • Maple
    evalf((exp(1) + 2*exp(-(sqrt(5) + 1)/4) * cos(sqrt((5 - sqrt(5))/2)/2) + 2*exp((sqrt(5) - 1)/4) * cos(sqrt((5 + sqrt(5))/2)/2))/5, 120); # Vaclav Kotesovec, Feb 24 2016
  • Mathematica
    RealDigits[HypergeometricPFQ[{}, {1/5, 2/5, 3/5, 4/5}, 1/3125], 10, 120][[1]]
  • PARI
    suminf(k=0, 1/(5*k)!) \\ Michel Marcus, Feb 21 2016

Formula

Equals Sum_{k>=0} 1/A100734(k).
Equals (exp(1) + exp(-(-1)^(1/5)) + exp((-1)^(2/5)) + exp(-(-1)^(3/5)) + exp((-1)^(4/5)))/5.
Equals (exp(1) + 2*exp(-(sqrt(5) + 1)/4) * cos(sqrt((5 - sqrt(5))/2)/2) + 2*exp((sqrt(5) - 1)/4) * cos(sqrt((5 + sqrt(5))/2)/2))/5. - Vaclav Kotesovec, Feb 24 2016
Sum_{k>=0} (-1)^k / (5*k)! = (exp(-1) + 2*cos(5^(1/4)/(2*sqrt(phi))) * exp(phi/2) + 2*cos(5^(1/4)*sqrt(phi)/2) / exp(1/(2*phi)))/5 = 0.99166694223909419..., where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 02 2020

A381161 a(n) = (10*n)!/((n!)^3*(2*n)!*(5*n)!).

Original entry on oeis.org

1, 15120, 3491888400, 1304290155168000, 601680868708529610000, 312696069714024464473125120, 175460887238127057573116837126400, 103865765423748548466734695459219968000, 63958974275578307119821712720619705931210000, 40596987692554701292235753375257230410967703200000
Offset: 0

Views

Author

Stefano Spezia, Feb 15 2025

Keywords

Comments

Calabi-Yau series number 2.

Crossrefs

Programs

  • Mathematica
    a[n_]:=(10n)!/((n!)^3*(2n)!*(5n)!); Array[a,10,0]

Formula

G.f.: hypergeom([1/10, 3/10, 7/10, 9/10], [1, 1, 1], 2^8*5^5*x).
a(n) ~ 9*2^(3+8*n)*5^(1+5*n)/((1 + 24*n)*(1 + 60*n)*Pi^2).

A381164 a(n) = Sum_{k=0..n} binomial(n,k)*(5*k)!/(k!)^5.

Original entry on oeis.org

1, 121, 113641, 168508561, 306213587881, 624890127114721, 1374618918516663841, 3187068298971939367561, 7682172545187676630759081, 19079663136489248380982551201, 48525227073661262262248690661841, 125818607409307965748858681991235961, 331488456546076036761442657285875590881
Offset: 0

Views

Author

Stefano Spezia, Feb 15 2025

Keywords

Comments

Calabi-Yau series number 79.

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Binomial[n, k](5k)!/k!^5, {k, 0, n}]; Array[a, 13, 0]

Formula

G.f.: hypergeom([1/5, 2/5, 3/5, 4/5], [1, 1, 1], 5^5*x/(1-x))/(1-x).
a(n) = hypergeom([1/5, 2/5, 3/5, 4/5, -n], [1, 1, 1, 1], -5^5).
a(n) == 1 (mod 120).
a(n) ~ 2^n * 3^(n+2) * 521^(n+2) / (5^(19/2) * Pi^2 * n^2). - Vaclav Kotesovec, May 29 2025
Showing 1-10 of 13 results. Next