cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A100733 a(n) = (4*n)!.

Original entry on oeis.org

1, 24, 40320, 479001600, 20922789888000, 2432902008176640000, 620448401733239439360000, 304888344611713860501504000000, 263130836933693530167218012160000000, 371993326789901217467999448150835200000000, 815915283247897734345611269596115894272000000000
Offset: 0

Views

Author

Ralf Stephan, Dec 08 2004

Keywords

Comments

From Karol A. Penson, Jun 11 2009: (Start)
Integral representation of a(n) as n-th moment of a positive function W(x) = (1/4)*exp(-x^(1/4))/x^(3/4) on the positive axis:
a(n) = Integral_{x=0..oo} x^n*W(x) dx = Integral_{x=0..oo} x^n*(1/4)*exp(-x^(1/4))/x^(3/4) dx, n >= 0.
This is the solution of the Stieltjes moment problem with the moments a(n), n >= 0.
As the moments a(n) grow very rapidly this suggests, but does not prove, that this solution may not be unique.
This is indeed the case as by construction the following "doubly" infinite family:
V(k,a,x) = (1/4)*exp(-x^(1/4))*(a*sin((3/4)*Pi*k + tan((1/4)*Pi*k)*x^(1/4)) + 1)/x^(3/4),
with the restrictions k=+-1,+-2,..., abs(a) < 1 is still positive on 0 <= x < infinity and has moments a(n).
(End)

Crossrefs

Programs

Formula

E.g.f.: 1/(1-x^4).
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ sqrt(Pi)*2^(8*n+3/2)*n^(4*n+1/2)/exp(4*n).
Sum_{n>=0} 1/a(n) = (cos(1) + cosh(1))/2 = 1.04169147034169174... = A332890. (End)
Sum_{n>=0} (-1)^n/a(n) = cos(1/sqrt(2))*cosh(1/sqrt(2)). - Amiram Eldar, Feb 14 2021

Extensions

More terms from Harvey P. Dale, Oct 03 2014

A268504 a(n) = Product_{k=0..n} (3*k)!.

Original entry on oeis.org

1, 6, 4320, 1567641600, 750902834626560000, 981936389699695364014080000000, 6286723722110812136775527266768650240000000000, 321194638135877430211257700556824829511701622266265600000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 16 2016

Keywords

Comments

Partial products of A100732. - Michel Marcus, Jul 06 2019

Crossrefs

Programs

  • Mathematica
    Table[Product[(3*k)!,{k,0,n}],{n,0,10}]
  • PARI
    {a(n) = prod(k=1, n, (3*k)!)} \\ Seiichi Manyama, Jul 06 2019

Formula

a(n) ~ Gamma(1/3)^(1/3) * 3^(3*n^2/2 + 2*n + 11/36) * 2^(n/2 + 1/3) * Pi^(n/2 + 1/3) * n^(3*n^2/2 + 2*n + 19/36) / (A^(1/3) * exp(9*n^2/4 + 2*n - 1/36)), where A = A074962 is the Glaisher-Kinkelin constant.

A100734 a(n) = (5*n)!.

Original entry on oeis.org

1, 120, 3628800, 1307674368000, 2432902008176640000, 15511210043330985984000000, 265252859812191058636308480000000, 10333147966386144929666651337523200000000
Offset: 0

Views

Author

Ralf Stephan, Dec 08 2004

Keywords

Crossrefs

Programs

Formula

E.g.f.: 1/(1-x^5).
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ sqrt(2*Pi)*5^(5*n + 1/2)*n^(5*n + 1/2)/exp(5*n).
Sum_{n>=0} 1/a(n) = A269296. (End)

A330044 Expansion of e.g.f. exp(x) / (1 - x^3).

Original entry on oeis.org

1, 1, 1, 7, 25, 61, 841, 5251, 20497, 423865, 3780721, 20292031, 559501801, 6487717237, 44317795705, 1527439916731, 21798729916321, 180816606476401, 7478345832314977, 126737815733490295, 1236785588298582841, 59677199741873516461, 1171057417377450325801
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2019

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else 1 + 6*Binomial(n-1,3)*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 05 2021
    
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[x]/(1 - x^3), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[n!/(n - 3 k)!, {k, 0, Floor[n/3]}], {n, 0, 22}]
  • Sage
    [sum(factorial(3*k)*binomial(n, 3*k) for k in (0..n//3)) for n in (0..40)] # G. C. Greubel, Dec 05 2021

Formula

G.f.: Sum_{k>=0} (3*k)! * x^(3*k) / (1 - x)^(3*k + 1).
a(0) = a(1) = a(2) = 1; a(n) = n * (n - 1) * (n - 2) * a(n - 3) + 1.
a(n) = Sum_{k=0..floor(n/3)} n! / (n - 3*k)!.
a(n) ~ n! * (exp(1)/3 + 2*cos(sqrt(3)/2 - 2*Pi*n/3) / (3*exp(1/2))). - Vaclav Kotesovec, Apr 18 2020
a(n) = A158757(n, 2*n). - G. C. Greubel, Dec 05 2021

A195390 a(n) = (6*n)!.

Original entry on oeis.org

1, 720, 479001600, 6402373705728000, 620448401733239439360000, 265252859812191058636308480000000, 371993326789901217467999448150835200000000, 1405006117752879898543142606244511569936384000000000, 12413915592536072670862289047373375038521486354677760000000000
Offset: 0

Views

Author

Vincenzo Librandi, Sep 24 2011

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(6*n): n in [0..10]];
  • Mathematica
    (6*Range[0,10])! (* Harvey P. Dale, Dec 16 2013 *)

Formula

From Amiram Eldar, Apr 03 2021: (Start)
a(n) = A000142(A008588(n)).
Sum_{n>=0} 1/a(n) = A332892. (End)

A195391 a(n) = (7*n)!.

Original entry on oeis.org

1, 5040, 87178291200, 51090942171709440000, 304888344611713860501504000000, 10333147966386144929666651337523200000000, 1405006117752879898543142606244511569936384000000000, 608281864034267560872252163321295376887552831379210240000000000, 710998587804863451854045647463724949736497978881168458687447040000000000000
Offset: 0

Views

Author

Vincenzo Librandi, Sep 24 2011

Keywords

Crossrefs

Programs

A143084 Triangle read by rows: T(n,m) = (n + m)!.

Original entry on oeis.org

1, 1, 2, 2, 6, 24, 6, 24, 120, 720, 24, 120, 720, 5040, 40320, 120, 720, 5040, 40320, 362880, 3628800, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 16 2008

Keywords

Examples

			Triangle begins:
    1;
    1,    2;
    2,    6,    24;
    6,   24,   120,    720;
   24,  120,   720,   5040,   40320;
  120,  720,  5040,  40320,  362880,  3628800;
  720, 5040, 40320, 362880, 3628800, 39916800, 479001600;
  ...
		

Crossrefs

Column m=0 gives A000142.
T(2n,n) gives A100732.
Main diagonal gives A010050.
Row sums give A374574.

Programs

  • Mathematica
    t[n_, m_] := (n + m)!; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]

Formula

T(n,m) = (n + m)!.

Extensions

Offset changed to 0 by Jinyuan Wang, Dec 19 2020

A195392 a(n) = (8*n)!.

Original entry on oeis.org

1, 40320, 20922789888000, 620448401733239439360000, 263130836933693530167218012160000000, 815915283247897734345611269596115894272000000000, 12413915592536072670862289047373375038521486354677760000000000, 710998587804863451854045647463724949736497978881168458687447040000000000000
Offset: 0

Views

Author

Vincenzo Librandi, Sep 24 2011

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(8*n): n in [0..10]];
  • Mathematica
    (8*Range[0, 8])! (* Paolo Xausa, Aug 12 2025 *)

A065961 a(n) = (3*n - 1)!*n/2.

Original entry on oeis.org

1, 120, 60480, 79833600, 217945728000, 1067062284288000, 8515157028618240000, 103408066955539906560000, 1814811575069725360128000000, 44208809968698509772718080000000, 1447219603135314415919699066880000000, 61998887798316869577999908025139200000000
Offset: 1

Views

Author

Len Smiley and George E. Antoniou, Dec 08 2001

Keywords

Crossrefs

Cf. A100732.

Programs

  • Magma
    [ Factorial(3*n)/6: n in [1..62] ]; // Vincenzo Librandi, Apr 24 2011
  • Mathematica
    (3*Range[15])!/6 (* Paolo Xausa, Feb 16 2024 *)
  • PARI
    { for (n=1, 60, a=(3*n - 1)!*n/2; write("b065961.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 04 2009
    

Formula

a(n) = (3*n)! / 6.
a(n) - 3*n*(3*n-1)*(3*n-2)*a(n-1) = 0. - R. J. Mathar, Oct 31 2015
From Amiram Eldar, Feb 17 2024: (Start)
Sum_{n>=1} 1/a(n) = 2*e - 6 + 4*cos(sqrt(3)/2)/sqrt(e).
Sum_{n>=1} (-1)^(n+1)/a(n) = 6 - 2/e - 4*sqrt(e)*cos(sqrt(3)/2). (End)

A195393 a(n) = (9*n)!.

Original entry on oeis.org

1, 362880, 6402373705728000, 10888869450418352160768000000, 371993326789901217467999448150835200000000, 119622220865480194561963161495657715064383733760000000000
Offset: 0

Views

Author

Vincenzo Librandi, Sep 24 2011

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(9*n): n in [0..10]];
  • Mathematica
    (9Range[0,10])! (* Harvey P. Dale, Jan 25 2023 *)
Showing 1-10 of 11 results. Next