cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A330045 Expansion of e.g.f. exp(x) / (1 - x^4).

Original entry on oeis.org

1, 1, 1, 1, 25, 121, 361, 841, 42001, 365905, 1819441, 6660721, 498971881, 6278929801, 43710250585, 218205219961, 21795091762081, 358652470233121, 3210080802962401, 20298322381652065, 2534333270094778681, 51516840824285500441, 563561785768079119561
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2019

Keywords

Crossrefs

Outer diagonal of A158777.

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[x]/(1 - x^4), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[n!/(n - 4 k)!, {k, 0, Floor[n/4]}], {n, 0, 22}]

Formula

G.f.: Sum_{k>=0} (4*k)! * x^(4*k) / (1 - x)^(4*k + 1).
a(0) = a(1) = a(2) = a(3) = 1; a(n) = n*(n - 1)*(n - 2)*(n - 3)*a(n - 4) + 1.
a(n) = Sum_{k=0..floor(n/4)} n! / (n - 4*k)!.
a(n) ~ n! * (2*cos(Pi*n/2 - 1) + exp(1) + (-1)^n*exp(-1))/4. - Vaclav Kotesovec, Apr 18 2020

A337725 a(n) = (3*n+1)! * Sum_{k=0..n} 1 / (3*k+1)!.

Original entry on oeis.org

1, 25, 5251, 3780721, 6487717237, 21798729916321, 126737815733490295, 1171057417377450325801, 16160592359808814496053801, 317652603424402057734433512457, 8567090714356123497097671830965291, 307592825008242258039794809418977808065
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(3 n + 1)! Sum[1/(3 k + 1)!, {k, 0, n}], {n, 0, 11}]
    Table[(3 n + 1)! SeriesCoefficient[(Exp[3 x/2] - 2 Sin[Pi/6 - Sqrt[3] x/2])/(3 Exp[x/2] (1 - x^3)), {x, 0, 3 n + 1}], {n, 0, 11}]
    Table[Floor[(Exp[3/2] + 2 Sin[(3 Sqrt[3] - Pi)/6])/(3 Sqrt[Exp[1]]) (3 n + 1)!], {n, 0, 11}]
  • PARI
    a(n) = (3*n+1)!*sum(k=0, n, 1/(3*k+1)!); \\ Michel Marcus, Sep 17 2020

Formula

E.g.f.: (exp(3*x/2) - 2 * sin(Pi/6 - sqrt(3)*x/2)) / (3*exp(x/2) * (1 - x^3)) = x + 25*x^4/4! + 5251*x^7/7! + 3780721*x^10/10! + ...
a(n) = floor(c * (3*n+1)!), where c = (exp(3/2) + 2 * sin((3 * sqrt(3) - Pi) / 6))/(3 * sqrt(exp(1))) = A143820.

A337726 a(n) = (3*n+2)! * Sum_{k=0..n} 1 / (3*k+2)!.

Original entry on oeis.org

1, 61, 20497, 20292031, 44317795705, 180816606476401, 1236785588298582841, 13142083661260741268467, 205016505115667563788085201, 4494781858155895668489979946725, 133764708098719455094261803214536001, 5252940087036713001551661012234828759271
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(3 n + 2)! Sum[1/(3 k + 2)!, {k, 0, n}], {n, 0, 11}]
    Table[(3 n + 2)! SeriesCoefficient[(Exp[3 x/2] - 2 Sin[Sqrt[3] x/2 + Pi/6])/(3 Exp[x/2] (1 - x^3)), {x, 0, 3 n + 2}], {n, 0, 11}]
    Table[Floor[(Exp[3/2] - 2 Sin[(3 Sqrt[3] + Pi)/6])/(3 Sqrt[Exp[1]]) (3 n + 2)!], {n, 0, 11}]
  • PARI
    a(n) = (3*n+2)!*sum(k=0, n, 1/(3*k+2)!); \\ Michel Marcus, Sep 17 2020

Formula

E.g.f.: (exp(3*x/2) - 2 * sin(sqrt(3)*x/2 + Pi/6)) / (3*exp(x/2) * (1 - x^3)) = x^2/2! + 61*x^5/5! + 20497*x^8/8! + 20292031*x^11/11! + ...
a(n) = floor(c * (3*n+2)!), where c = (exp(3/2) - 2 * sin((3 * sqrt(3) + Pi) / 6))/(3 * sqrt(exp(1))) = A143821.

A158757 Expansion of e.g.f. exp(t*x)/(1 - x^2/t^2 - t^3* x^3).

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 6, 0, 0, 0, 7, 24, 0, 0, 0, 12, 0, 0, 0, 25, 0, 0, 120, 0, 0, 0, 260, 0, 0, 0, 61, 720, 0, 0, 0, 360, 0, 0, 0, 1470, 0, 0, 0, 841, 0, 0, 5040, 0, 0, 0, 15960, 0, 0, 0, 5082, 0, 0, 0, 5251, 40320, 0, 0, 0, 20160, 0, 0, 0, 122640, 0, 0, 0, 134456, 0, 0, 0, 20497
Offset: 0

Views

Author

Roger L. Bagula, Mar 25 2009

Keywords

Examples

			Irregular triangle begins as:
      1;
      0, 0,    1;
      2, 0,    0, 0,   1;
      0, 0,    6, 0,   0, 0,     7;
     24, 0,    0, 0,  12, 0,     0, 0,   25;
      0, 0,  120, 0,   0, 0,   260, 0,    0, 0,   61;
    720, 0,    0, 0, 360, 0,     0, 0, 1470, 0,    0, 0, 841;
      0, 0, 5040, 0,   0, 0, 15960, 0,    0, 0, 5082, 0,   0, 0, 5251;
		

References

  • H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, page 221.

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x^2/t^2 - t^3*x^3), {x, 0, 20}], n]], t], {n, 0, 10}]//Flatten
  • Sage
    f(x,t) = exp(t*x)/(1 - x^2/t^2 - t^3*x^3)
    def A158757(n,k): return ( factorial(n)*t^n*( f(x,t) ).series(x, 20).list()[n] ).series(t,2*n+1).list()[k]
    flatten([[A158757(n,k) for k in (0..2*n)] for n in (0..10)]) # G. C. Greubel, Dec 05 2021

Formula

T(n, k) = coefficients of e.g.f.: exp(t*x)/(1 - x^2/t^2 - t^3* x^3).
From G. C. Greubel, Dec 05 2021: (Start)
T(n, 2*n) = A330044(n).
T(n, 0) = A005359(n).
T(n, 2) = A005212(n). (End)

Extensions

Edited by G. C. Greubel, Dec 01 2021

A337750 a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k / (n-3*k)!.

Original entry on oeis.org

1, 1, 1, -5, -23, -59, 601, 4831, 19825, -302903, -3478319, -19626749, 399831961, 5968795405, 42864819817, -1091541253529, -20055152560799, -174888464853359, 5344185977277985, 116600656988485387, 1196237099596975561, -42646604098678320299, -1077390070573604975879
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 18 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[(-1)^k/(n - 3 k)!, {k, 0, Floor[n/3]}], {n, 0, 22}]
    nmax = 22; CoefficientList[Series[Exp[x]/(1 + x^3), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n!*sum(k=0, n\3, (-1)^k / (n-3*k)!); \\ Michel Marcus, Sep 18 2020

Formula

G.f.: Sum_{k>=0} (-1)^k * (3*k)! * x^(3*k) / (1 - x)^(3*k+1).
E.g.f.: exp(x) / (1 + x^3).
a(0) = a(1) = a(2) = 1; a(n) = 1 - n * (n-1) * (n-2) * a(n-3).

A334157 Row sums of array A158777.

Original entry on oeis.org

1, 2, 5, 16, 89, 686, 5917, 54860, 588401, 7370074, 103522421, 1573237832, 25869057865, 462768222086, 8965777751309, 186025937645956, 4106375449878497, 96241703493486770, 2390797380938894821, 62730027061416412544
Offset: 0

Views

Author

Petros Hadjicostas, Apr 16 2020

Keywords

Crossrefs

Programs

  • Maple
    W := proc(n, m) local v, s, h; v := 0;
    for s from 0 to m do
    if 0 = (m - s) mod 4 then
    h := (m - s)/4;
    v := v + binomial(n - s - 3*h, h)/s!;
    end if; end do; n!*v; end proc;
    seq(add(W(n1, m1), m1 = 0 .. n1), n1 = 0 .. 35);
  • Mathematica
    Table[Apply[Plus, CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/( 1 - x/t - t^4*x^4), {x, 0, 50}], n]], t]], {n, 0, 40}]; (* Program due to Roger L. Bagula from A158777 *)

Formula

a(n) = n!*Sum_{k=0..n} A003269(k+1)/(n-k)!.
a(n) = n!*Sum_{k=0..n} Sum_{s=0..floor(k/3)} binomial(k-3*s, s)/(n-k)!.
E.g.f.: exp(x)/(1 - x - x^4).

A358547 a(n) = Sum_{k=0..floor(n/3)} (n-k)!/(n-3*k)!.

Original entry on oeis.org

1, 1, 1, 3, 7, 13, 45, 151, 403, 1617, 6793, 23275, 105951, 522133, 2159077, 10964223, 61134955, 293587801, 1641566913, 10124731987, 55014334903, 335177088285, 2251814156701, 13587321392743, 89436553249347, 647267633012833, 4276528756374265, 30198747030078651
Offset: 0

Views

Author

Seiichi Manyama, Nov 21 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (n-k)!/(n-3*k)!);

Formula

a(n) = (3 * (2*n-1) * a(n-1) - n * a(n-2) + 2 * (n-1) * n * (2*n-3) * a(n-3) + 2 * (2*n-3))/(9 * (n-1)) for n > 2.
a(n) ~ sqrt(Pi) * 2^(2*n/3 + 1) * n^(2*n/3 + 1/2) / (3^(2*n/3 + 3/2) * exp(2*n/3 - (2/3)^(1/3) * n^(1/3))) * (1 + 1/(2^(4/3) * 3^(5/3) * n^(1/3)) + 145/(2^(11/3) * 3^(10/3) * n^(2/3)) + 3349/(23328*n)). - Vaclav Kotesovec, Nov 25 2022

A158785 Expansion of e.g.f.: exp(t*x)/(1 - x^2/t - t^3*x^3).

Original entry on oeis.org

1, 0, 1, 2, 0, 0, 1, 0, 6, 0, 0, 7, 24, 0, 0, 12, 0, 0, 25, 0, 120, 0, 0, 260, 0, 0, 61, 720, 0, 0, 360, 0, 0, 1470, 0, 0, 841, 0, 5040, 0, 0, 15960, 0, 0, 5082, 0, 0, 5251, 40320, 0, 0, 20160, 0, 0, 122640, 0, 0, 134456, 0, 0, 20497, 0, 362880, 0, 0, 1512000
Offset: 0

Views

Author

Roger L. Bagula, Mar 26 2009

Keywords

Examples

			Irregular triangle begins as:
      1;
      0,    1;
      2,    0, 0,     1;
      0,    6, 0,     0,     7;
     24,    0, 0,    12,     0, 0,     25;
      0,  120, 0,     0,   260, 0,      0,   61;
    720,    0, 0,   360,     0, 0,   1470,    0, 0,    841;
      0, 5040, 0,     0, 15960, 0,      0, 5082, 0,      0, 5251;
  40320,    0, 0, 20160,     0, 0, 122640,    0, 0, 134456,    0, 0, 20497;
		

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[Expand[t^Floor[n/2]*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x^2/t - t^3*x^3), {x, 0, 20}], n]], t], {n, 0, 10}]//Flatten
  • Sage
    f(x, t) = exp(t*x)/(1 - x^2/t - t^3*x^3)
    def A158785(n, k): return ( factorial(n)*t^(n//2)*( f(x, t) ).series(x, 20).list()[n] ).series(t, 2*n+1).list()[k]
    flatten([[A158785(n, k) for k in (0..n+(n//2))] for n in (0..10)]) # G. C. Greubel, Dec 05 2021

Formula

T(n, k) = coefficients of e.g.f.: t^floor(n/2)*exp(t*x)/(1 - x^2/t - t^3*x^3).
From G. C. Greubel, Dec 05 2021: (Start)
T(n, floor(n/2) + n) = A330044(n).
T(n, 0) = A005359(n).
T(n, 1) = A005212(n). (End)

Extensions

Edited by G. C. Greubel, Dec 05 2021
Showing 1-8 of 8 results.