cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A330044 Expansion of e.g.f. exp(x) / (1 - x^3).

Original entry on oeis.org

1, 1, 1, 7, 25, 61, 841, 5251, 20497, 423865, 3780721, 20292031, 559501801, 6487717237, 44317795705, 1527439916731, 21798729916321, 180816606476401, 7478345832314977, 126737815733490295, 1236785588298582841, 59677199741873516461, 1171057417377450325801
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2019

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else 1 + 6*Binomial(n-1,3)*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 05 2021
    
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[x]/(1 - x^3), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[n!/(n - 3 k)!, {k, 0, Floor[n/3]}], {n, 0, 22}]
  • Sage
    [sum(factorial(3*k)*binomial(n, 3*k) for k in (0..n//3)) for n in (0..40)] # G. C. Greubel, Dec 05 2021

Formula

G.f.: Sum_{k>=0} (3*k)! * x^(3*k) / (1 - x)^(3*k + 1).
a(0) = a(1) = a(2) = 1; a(n) = n * (n - 1) * (n - 2) * a(n - 3) + 1.
a(n) = Sum_{k=0..floor(n/3)} n! / (n - 3*k)!.
a(n) ~ n! * (exp(1)/3 + 2*cos(sqrt(3)/2 - 2*Pi*n/3) / (3*exp(1/2))). - Vaclav Kotesovec, Apr 18 2020
a(n) = A158757(n, 2*n). - G. C. Greubel, Dec 05 2021

A158785 Expansion of e.g.f.: exp(t*x)/(1 - x^2/t - t^3*x^3).

Original entry on oeis.org

1, 0, 1, 2, 0, 0, 1, 0, 6, 0, 0, 7, 24, 0, 0, 12, 0, 0, 25, 0, 120, 0, 0, 260, 0, 0, 61, 720, 0, 0, 360, 0, 0, 1470, 0, 0, 841, 0, 5040, 0, 0, 15960, 0, 0, 5082, 0, 0, 5251, 40320, 0, 0, 20160, 0, 0, 122640, 0, 0, 134456, 0, 0, 20497, 0, 362880, 0, 0, 1512000
Offset: 0

Views

Author

Roger L. Bagula, Mar 26 2009

Keywords

Examples

			Irregular triangle begins as:
      1;
      0,    1;
      2,    0, 0,     1;
      0,    6, 0,     0,     7;
     24,    0, 0,    12,     0, 0,     25;
      0,  120, 0,     0,   260, 0,      0,   61;
    720,    0, 0,   360,     0, 0,   1470,    0, 0,    841;
      0, 5040, 0,     0, 15960, 0,      0, 5082, 0,      0, 5251;
  40320,    0, 0, 20160,     0, 0, 122640,    0, 0, 134456,    0, 0, 20497;
		

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[Expand[t^Floor[n/2]*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x^2/t - t^3*x^3), {x, 0, 20}], n]], t], {n, 0, 10}]//Flatten
  • Sage
    f(x, t) = exp(t*x)/(1 - x^2/t - t^3*x^3)
    def A158785(n, k): return ( factorial(n)*t^(n//2)*( f(x, t) ).series(x, 20).list()[n] ).series(t, 2*n+1).list()[k]
    flatten([[A158785(n, k) for k in (0..n+(n//2))] for n in (0..10)]) # G. C. Greubel, Dec 05 2021

Formula

T(n, k) = coefficients of e.g.f.: t^floor(n/2)*exp(t*x)/(1 - x^2/t - t^3*x^3).
From G. C. Greubel, Dec 05 2021: (Start)
T(n, floor(n/2) + n) = A330044(n).
T(n, 0) = A005359(n).
T(n, 1) = A005212(n). (End)

Extensions

Edited by G. C. Greubel, Dec 05 2021
Showing 1-2 of 2 results.