A330045
Expansion of e.g.f. exp(x) / (1 - x^4).
Original entry on oeis.org
1, 1, 1, 1, 25, 121, 361, 841, 42001, 365905, 1819441, 6660721, 498971881, 6278929801, 43710250585, 218205219961, 21795091762081, 358652470233121, 3210080802962401, 20298322381652065, 2534333270094778681, 51516840824285500441, 563561785768079119561
Offset: 0
-
nmax = 22; CoefficientList[Series[Exp[x]/(1 - x^4), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[n!/(n - 4 k)!, {k, 0, Floor[n/4]}], {n, 0, 22}]
A158777
Irregular array T(n,k), read by rows: row n is the polynomial expansion in t of p(x,t) = exp(t*x)/(1 - x/t - t^4 * x^4) with weighting factors t^n*n!.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 2, 0, 1, 6, 0, 6, 0, 3, 0, 1, 24, 0, 24, 0, 12, 0, 4, 0, 25, 120, 0, 120, 0, 60, 0, 20, 0, 245, 0, 121, 720, 0, 720, 0, 360, 0, 120, 0, 2190, 0, 1446, 0, 361, 5040, 0, 5040, 0, 2520, 0, 840, 0, 20370, 0, 15162, 0, 5047, 0, 841, 40320, 0, 40320, 0, 20160, 0, 6720, 0
Offset: 0
Array T(n,k) (with n >= 0 and 0 <= k <= 2*n) begins as follows:
1;
1, 0, 1;
2, 0, 2, 0, 1;
6, 0, 6, 0, 3, 0, 1;
24, 0, 24, 0, 12, 0, 4, 0, 25;
120, 0, 120, 0, 60, 0, 20, 0, 245, 0, 121;
720, 0, 720, 0, 360, 0, 120, 0, 2190, 0, 1446, 0, 361;
5040, 0, 5040, 0, 2520, 0, 840, 0, 20370, 0, 15162, 0, 5047, 0, 841;
...
-
# Triangle T(n, k) without the zeros (even k):
W := proc(n, m) local v, s, h; v := 0;
for s from 0 to m do
if 0 = (m - s) mod 4 then
h := (m - s)/4;
v := v + binomial(n - s - 3*h, h)/s!;
end if; end do; n!*v; end proc;
for n1 from 0 to 20 do
seq(W(n1,m1), m1=0..n1); end do; # Petros Hadjicostas, Apr 15 2020
-
(* Generates the sequence in the data section *)
Table[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x/t - t^4*x^4), {x, 0, 20}], n]], {n, 0, 10}];
a = Table[CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x/t - t^4*x^4), {x, 0, 20}], n]], t], {n, 0, 10}];
Flatten[%]
(* Generates row sums *)
Table[Apply[Plus, CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/( 1 - x/t - t^4*x^4), {x, 0, 20}], n]], t]], {n, 0, 10}];
Showing 1-2 of 2 results.
Comments