cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A334157 Row sums of array A158777.

Original entry on oeis.org

1, 2, 5, 16, 89, 686, 5917, 54860, 588401, 7370074, 103522421, 1573237832, 25869057865, 462768222086, 8965777751309, 186025937645956, 4106375449878497, 96241703493486770, 2390797380938894821, 62730027061416412544
Offset: 0

Views

Author

Petros Hadjicostas, Apr 16 2020

Keywords

Crossrefs

Programs

  • Maple
    W := proc(n, m) local v, s, h; v := 0;
    for s from 0 to m do
    if 0 = (m - s) mod 4 then
    h := (m - s)/4;
    v := v + binomial(n - s - 3*h, h)/s!;
    end if; end do; n!*v; end proc;
    seq(add(W(n1, m1), m1 = 0 .. n1), n1 = 0 .. 35);
  • Mathematica
    Table[Apply[Plus, CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/( 1 - x/t - t^4*x^4), {x, 0, 50}], n]], t]], {n, 0, 40}]; (* Program due to Roger L. Bagula from A158777 *)

Formula

a(n) = n!*Sum_{k=0..n} A003269(k+1)/(n-k)!.
a(n) = n!*Sum_{k=0..n} Sum_{s=0..floor(k/3)} binomial(k-3*s, s)/(n-k)!.
E.g.f.: exp(x)/(1 - x - x^4).

A330045 Expansion of e.g.f. exp(x) / (1 - x^4).

Original entry on oeis.org

1, 1, 1, 1, 25, 121, 361, 841, 42001, 365905, 1819441, 6660721, 498971881, 6278929801, 43710250585, 218205219961, 21795091762081, 358652470233121, 3210080802962401, 20298322381652065, 2534333270094778681, 51516840824285500441, 563561785768079119561
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2019

Keywords

Crossrefs

Outer diagonal of A158777.

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[x]/(1 - x^4), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[n!/(n - 4 k)!, {k, 0, Floor[n/4]}], {n, 0, 22}]

Formula

G.f.: Sum_{k>=0} (4*k)! * x^(4*k) / (1 - x)^(4*k + 1).
a(0) = a(1) = a(2) = a(3) = 1; a(n) = n*(n - 1)*(n - 2)*(n - 3)*a(n - 4) + 1.
a(n) = Sum_{k=0..floor(n/4)} n! / (n - 4*k)!.
a(n) ~ n! * (2*cos(Pi*n/2 - 1) + exp(1) + (-1)^n*exp(-1))/4. - Vaclav Kotesovec, Apr 18 2020
Showing 1-2 of 2 results.