A330044
Expansion of e.g.f. exp(x) / (1 - x^3).
Original entry on oeis.org
1, 1, 1, 7, 25, 61, 841, 5251, 20497, 423865, 3780721, 20292031, 559501801, 6487717237, 44317795705, 1527439916731, 21798729916321, 180816606476401, 7478345832314977, 126737815733490295, 1236785588298582841, 59677199741873516461, 1171057417377450325801
Offset: 0
-
[n le 3 select 1 else 1 + 6*Binomial(n-1,3)*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 05 2021
-
nmax = 22; CoefficientList[Series[Exp[x]/(1 - x^3), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[n!/(n - 3 k)!, {k, 0, Floor[n/3]}], {n, 0, 22}]
-
[sum(factorial(3*k)*binomial(n, 3*k) for k in (0..n//3)) for n in (0..40)] # G. C. Greubel, Dec 05 2021
A337727
a(n) = (4*n)! * Sum_{k=0..n} 1 / (4*k)!.
Original entry on oeis.org
1, 25, 42001, 498971881, 21795091762081, 2534333270094778681, 646315807872650838343345, 317599587988620621961919733001, 274101148417699141578015206369183041, 387502275541069630431671657548241448722521, 849931991080760484603611346800010863970028660561
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A100733,
A330045,
A332890,
A337725,
A337726,
A337728,
A337729,
A337730.
-
Table[(4 n)! Sum[1/(4 k)!, {k, 0, n}], {n, 0, 10}]
Table[(4 n)! SeriesCoefficient[(1/2) (Cos[x] + Cosh[x])/(1 - x^4), {x, 0, 4 n}], {n, 0, 10}]
Table[Floor[(1/2) (Cos[1] + Cosh[1]) (4 n)!], {n, 0, 10}]
-
a(n) = (4*n)!*sum(k=0, n, 1/(4*k)!); \\ Michel Marcus, Sep 17 2020
A337728
a(n) = (4*n+1)! * Sum_{k=0..n} 1 / (4*k+1)!.
Original entry on oeis.org
1, 121, 365905, 6278929801, 358652470233121, 51516840824285500441, 15640512874253077933887601, 8915467710633236496186345872425, 8755702529258688898174686554391144001, 13878488965077362598718732163634314533105081, 33731389859841228248933904149069928786421237268881
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A330045,
A334363,
A337725,
A337726,
A337727,
A337729,
A337730.
-
Table[(4 n + 1)! Sum[1/(4 k + 1)!, {k, 0, n}], {n, 0, 10}]
Table[(4 n + 1)! SeriesCoefficient[(1/2) (Sin[x] + Sinh[x])/(1 - x^4), {x, 0, 4 n + 1}], {n, 0, 10}]
Table[Floor[(1/2) (Sin[1] + Sinh[1]) (4 n + 1)!], {n, 0, 10}]
-
a(n) = (4*n+1)!*sum(k=0, n, 1/(4*k+1)!); \\ Michel Marcus, Sep 17 2020
A337729
a(n) = (4*n+2)! * Sum_{k=0..n} 1 / (4*k+2)!.
Original entry on oeis.org
1, 361, 1819441, 43710250585, 3210080802962401, 563561785768079119561, 202205968733586788098486801, 132994909755454702268136738753721, 148026526435655214537290625514621562305, 262237873172349351865682580536682974917045801, 704454843460345510903820429747302209179158476142321
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A330045,
A334364,
A337725,
A337726,
A337727,
A337728,
A337730.
-
Table[(4 n + 2)! Sum[1/(4 k + 2)!, {k, 0, n}], {n, 0, 10}]
Table[(4 n + 2)! SeriesCoefficient[(1/2) (Cosh[x] - Cos[x])/(1 - x^4), {x, 0, 4 n + 2}], {n, 0, 10}]
Table[Floor[(1/2) (Cosh[1] - Cos[1]) (4 n + 2)!], {n, 0, 10}]
-
a(n) = (4*n+2)!*sum(k=0, n, 1/(4*k+2)!); \\ Michel Marcus, Sep 17 2020
A337730
a(n) = (4*n+3)! * Sum_{k=0..n} 1 / (4*k+3)!.
Original entry on oeis.org
1, 841, 6660721, 218205219961, 20298322381652065, 4313799472548696853801, 1816972337837511114820981201, 1372104830641374893468212163747161, 1724241814377177346127894133451232399041, 3403694723384093133512770088891935585284510985
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A330045,
A334365,
A337725,
A337726,
A337727,
A337728,
A337729.
-
Table[(4 n + 3)! Sum[1/(4 k + 3)!, {k, 0, n}], {n, 0, 9}]
Table[(4 n + 3)! SeriesCoefficient[(1/2) (Sinh[x] - Sin[x])/(1 - x^4), {x, 0, 4 n + 3}], {n, 0, 9}]
Table[Floor[(1/2) (Sinh[1] - Sin[1]) (4 n + 3)!], {n, 0, 9}]
-
a(n) = (4*n+3)!*sum(k=0, n, 1/(4*k+3)!); \\ Michel Marcus, Sep 17 2020
A337751
a(n) = n! * Sum_{k=0..floor(n/4)} (-1)^k / (n-4*k)!.
Original entry on oeis.org
1, 1, 1, 1, -23, -119, -359, -839, 38641, 359857, 1809361, 6644881, -459055079, -6175146119, -43468088663, -217686301559, 20051525850721, 352724346317281, 3192296431410721, 20250050516224417, -2331591425921837879, -50665325105014242839, -560439561498466178759
Offset: 0
-
Table[n! Sum[(-1)^k/(n - 4 k)!, {k, 0, Floor[n/4]}], {n, 0, 22}]
nmax = 22; CoefficientList[Series[Exp[x]/(1 + x^4), {x, 0, nmax}], x] Range[0, nmax]!
-
a(n) = n!*sum(k=0, n\4, (-1)^k / (n-4*k)!); \\ Michel Marcus, Sep 18 2020
A158777
Irregular array T(n,k), read by rows: row n is the polynomial expansion in t of p(x,t) = exp(t*x)/(1 - x/t - t^4 * x^4) with weighting factors t^n*n!.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 2, 0, 1, 6, 0, 6, 0, 3, 0, 1, 24, 0, 24, 0, 12, 0, 4, 0, 25, 120, 0, 120, 0, 60, 0, 20, 0, 245, 0, 121, 720, 0, 720, 0, 360, 0, 120, 0, 2190, 0, 1446, 0, 361, 5040, 0, 5040, 0, 2520, 0, 840, 0, 20370, 0, 15162, 0, 5047, 0, 841, 40320, 0, 40320, 0, 20160, 0, 6720, 0
Offset: 0
Array T(n,k) (with n >= 0 and 0 <= k <= 2*n) begins as follows:
1;
1, 0, 1;
2, 0, 2, 0, 1;
6, 0, 6, 0, 3, 0, 1;
24, 0, 24, 0, 12, 0, 4, 0, 25;
120, 0, 120, 0, 60, 0, 20, 0, 245, 0, 121;
720, 0, 720, 0, 360, 0, 120, 0, 2190, 0, 1446, 0, 361;
5040, 0, 5040, 0, 2520, 0, 840, 0, 20370, 0, 15162, 0, 5047, 0, 841;
...
-
# Triangle T(n, k) without the zeros (even k):
W := proc(n, m) local v, s, h; v := 0;
for s from 0 to m do
if 0 = (m - s) mod 4 then
h := (m - s)/4;
v := v + binomial(n - s - 3*h, h)/s!;
end if; end do; n!*v; end proc;
for n1 from 0 to 20 do
seq(W(n1,m1), m1=0..n1); end do; # Petros Hadjicostas, Apr 15 2020
-
(* Generates the sequence in the data section *)
Table[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x/t - t^4*x^4), {x, 0, 20}], n]], {n, 0, 10}];
a = Table[CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x/t - t^4*x^4), {x, 0, 20}], n]], t], {n, 0, 10}];
Flatten[%]
(* Generates row sums *)
Table[Apply[Plus, CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/( 1 - x/t - t^4*x^4), {x, 0, 20}], n]], t]], {n, 0, 10}];
Original entry on oeis.org
1, 2, 5, 16, 89, 686, 5917, 54860, 588401, 7370074, 103522421, 1573237832, 25869057865, 462768222086, 8965777751309, 186025937645956, 4106375449878497, 96241703493486770, 2390797380938894821, 62730027061416412544
Offset: 0
-
W := proc(n, m) local v, s, h; v := 0;
for s from 0 to m do
if 0 = (m - s) mod 4 then
h := (m - s)/4;
v := v + binomial(n - s - 3*h, h)/s!;
end if; end do; n!*v; end proc;
seq(add(W(n1, m1), m1 = 0 .. n1), n1 = 0 .. 35);
-
Table[Apply[Plus, CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/( 1 - x/t - t^4*x^4), {x, 0, 50}], n]], t]], {n, 0, 40}]; (* Program due to Roger L. Bagula from A158777 *)
Showing 1-8 of 8 results.
Comments