A337725
a(n) = (3*n+1)! * Sum_{k=0..n} 1 / (3*k+1)!.
Original entry on oeis.org
1, 25, 5251, 3780721, 6487717237, 21798729916321, 126737815733490295, 1171057417377450325801, 16160592359808814496053801, 317652603424402057734433512457, 8567090714356123497097671830965291, 307592825008242258039794809418977808065
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A100089,
A143820,
A330044,
A337726,
A337727,
A337728,
A337729,
A337730.
-
Table[(3 n + 1)! Sum[1/(3 k + 1)!, {k, 0, n}], {n, 0, 11}]
Table[(3 n + 1)! SeriesCoefficient[(Exp[3 x/2] - 2 Sin[Pi/6 - Sqrt[3] x/2])/(3 Exp[x/2] (1 - x^3)), {x, 0, 3 n + 1}], {n, 0, 11}]
Table[Floor[(Exp[3/2] + 2 Sin[(3 Sqrt[3] - Pi)/6])/(3 Sqrt[Exp[1]]) (3 n + 1)!], {n, 0, 11}]
-
a(n) = (3*n+1)!*sum(k=0, n, 1/(3*k+1)!); \\ Michel Marcus, Sep 17 2020
A337728
a(n) = (4*n+1)! * Sum_{k=0..n} 1 / (4*k+1)!.
Original entry on oeis.org
1, 121, 365905, 6278929801, 358652470233121, 51516840824285500441, 15640512874253077933887601, 8915467710633236496186345872425, 8755702529258688898174686554391144001, 13878488965077362598718732163634314533105081, 33731389859841228248933904149069928786421237268881
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A330045,
A334363,
A337725,
A337726,
A337727,
A337729,
A337730.
-
Table[(4 n + 1)! Sum[1/(4 k + 1)!, {k, 0, n}], {n, 0, 10}]
Table[(4 n + 1)! SeriesCoefficient[(1/2) (Sin[x] + Sinh[x])/(1 - x^4), {x, 0, 4 n + 1}], {n, 0, 10}]
Table[Floor[(1/2) (Sin[1] + Sinh[1]) (4 n + 1)!], {n, 0, 10}]
-
a(n) = (4*n+1)!*sum(k=0, n, 1/(4*k+1)!); \\ Michel Marcus, Sep 17 2020
A337726
a(n) = (3*n+2)! * Sum_{k=0..n} 1 / (3*k+2)!.
Original entry on oeis.org
1, 61, 20497, 20292031, 44317795705, 180816606476401, 1236785588298582841, 13142083661260741268467, 205016505115667563788085201, 4494781858155895668489979946725, 133764708098719455094261803214536001, 5252940087036713001551661012234828759271
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A100043,
A143821,
A330044,
A337725,
A337727,
A337728,
A337729,
A337730.
-
Table[(3 n + 2)! Sum[1/(3 k + 2)!, {k, 0, n}], {n, 0, 11}]
Table[(3 n + 2)! SeriesCoefficient[(Exp[3 x/2] - 2 Sin[Sqrt[3] x/2 + Pi/6])/(3 Exp[x/2] (1 - x^3)), {x, 0, 3 n + 2}], {n, 0, 11}]
Table[Floor[(Exp[3/2] - 2 Sin[(3 Sqrt[3] + Pi)/6])/(3 Sqrt[Exp[1]]) (3 n + 2)!], {n, 0, 11}]
-
a(n) = (3*n+2)!*sum(k=0, n, 1/(3*k+2)!); \\ Michel Marcus, Sep 17 2020
A337729
a(n) = (4*n+2)! * Sum_{k=0..n} 1 / (4*k+2)!.
Original entry on oeis.org
1, 361, 1819441, 43710250585, 3210080802962401, 563561785768079119561, 202205968733586788098486801, 132994909755454702268136738753721, 148026526435655214537290625514621562305, 262237873172349351865682580536682974917045801, 704454843460345510903820429747302209179158476142321
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A330045,
A334364,
A337725,
A337726,
A337727,
A337728,
A337730.
-
Table[(4 n + 2)! Sum[1/(4 k + 2)!, {k, 0, n}], {n, 0, 10}]
Table[(4 n + 2)! SeriesCoefficient[(1/2) (Cosh[x] - Cos[x])/(1 - x^4), {x, 0, 4 n + 2}], {n, 0, 10}]
Table[Floor[(1/2) (Cosh[1] - Cos[1]) (4 n + 2)!], {n, 0, 10}]
-
a(n) = (4*n+2)!*sum(k=0, n, 1/(4*k+2)!); \\ Michel Marcus, Sep 17 2020
A337730
a(n) = (4*n+3)! * Sum_{k=0..n} 1 / (4*k+3)!.
Original entry on oeis.org
1, 841, 6660721, 218205219961, 20298322381652065, 4313799472548696853801, 1816972337837511114820981201, 1372104830641374893468212163747161, 1724241814377177346127894133451232399041, 3403694723384093133512770088891935585284510985
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A330045,
A334365,
A337725,
A337726,
A337727,
A337728,
A337729.
-
Table[(4 n + 3)! Sum[1/(4 k + 3)!, {k, 0, n}], {n, 0, 9}]
Table[(4 n + 3)! SeriesCoefficient[(1/2) (Sinh[x] - Sin[x])/(1 - x^4), {x, 0, 4 n + 3}], {n, 0, 9}]
Table[Floor[(1/2) (Sinh[1] - Sin[1]) (4 n + 3)!], {n, 0, 9}]
-
a(n) = (4*n+3)!*sum(k=0, n, 1/(4*k+3)!); \\ Michel Marcus, Sep 17 2020
A352660
a(n) = n! * Sum_{k=0..floor(n/4)} 1 / (4*k)!.
Original entry on oeis.org
1, 1, 2, 6, 25, 125, 750, 5250, 42001, 378009, 3780090, 41580990, 498971881, 6486634453, 90812882342, 1362193235130, 21795091762081, 370516559955377, 6669298079196786, 126716663504738934, 2534333270094778681, 53220998671990352301, 1170861970783787750622
Offset: 0
-
Table[n! Sum[1/(4 k)!, {k, 0, Floor[n/4]}], {n, 0, 22}]
nmax = 22; CoefficientList[Series[(Cos[x] + Cosh[x])/(2 (1 - x)), {x, 0, nmax}], x] Range[0, nmax]!
-
a(n) = n! * sum(k=0, n\4, 1/(4*k)!); \\ Michel Marcus, Mar 29 2022
Showing 1-6 of 6 results.