A337727
a(n) = (4*n)! * Sum_{k=0..n} 1 / (4*k)!.
Original entry on oeis.org
1, 25, 42001, 498971881, 21795091762081, 2534333270094778681, 646315807872650838343345, 317599587988620621961919733001, 274101148417699141578015206369183041, 387502275541069630431671657548241448722521, 849931991080760484603611346800010863970028660561
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A100733,
A330045,
A332890,
A337725,
A337726,
A337728,
A337729,
A337730.
-
Table[(4 n)! Sum[1/(4 k)!, {k, 0, n}], {n, 0, 10}]
Table[(4 n)! SeriesCoefficient[(1/2) (Cos[x] + Cosh[x])/(1 - x^4), {x, 0, 4 n}], {n, 0, 10}]
Table[Floor[(1/2) (Cos[1] + Cosh[1]) (4 n)!], {n, 0, 10}]
-
a(n) = (4*n)!*sum(k=0, n, 1/(4*k)!); \\ Michel Marcus, Sep 17 2020
A337728
a(n) = (4*n+1)! * Sum_{k=0..n} 1 / (4*k+1)!.
Original entry on oeis.org
1, 121, 365905, 6278929801, 358652470233121, 51516840824285500441, 15640512874253077933887601, 8915467710633236496186345872425, 8755702529258688898174686554391144001, 13878488965077362598718732163634314533105081, 33731389859841228248933904149069928786421237268881
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A330045,
A334363,
A337725,
A337726,
A337727,
A337729,
A337730.
-
Table[(4 n + 1)! Sum[1/(4 k + 1)!, {k, 0, n}], {n, 0, 10}]
Table[(4 n + 1)! SeriesCoefficient[(1/2) (Sin[x] + Sinh[x])/(1 - x^4), {x, 0, 4 n + 1}], {n, 0, 10}]
Table[Floor[(1/2) (Sin[1] + Sinh[1]) (4 n + 1)!], {n, 0, 10}]
-
a(n) = (4*n+1)!*sum(k=0, n, 1/(4*k+1)!); \\ Michel Marcus, Sep 17 2020
A337726
a(n) = (3*n+2)! * Sum_{k=0..n} 1 / (3*k+2)!.
Original entry on oeis.org
1, 61, 20497, 20292031, 44317795705, 180816606476401, 1236785588298582841, 13142083661260741268467, 205016505115667563788085201, 4494781858155895668489979946725, 133764708098719455094261803214536001, 5252940087036713001551661012234828759271
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A100043,
A143821,
A330044,
A337725,
A337727,
A337728,
A337729,
A337730.
-
Table[(3 n + 2)! Sum[1/(3 k + 2)!, {k, 0, n}], {n, 0, 11}]
Table[(3 n + 2)! SeriesCoefficient[(Exp[3 x/2] - 2 Sin[Sqrt[3] x/2 + Pi/6])/(3 Exp[x/2] (1 - x^3)), {x, 0, 3 n + 2}], {n, 0, 11}]
Table[Floor[(Exp[3/2] - 2 Sin[(3 Sqrt[3] + Pi)/6])/(3 Sqrt[Exp[1]]) (3 n + 2)!], {n, 0, 11}]
-
a(n) = (3*n+2)!*sum(k=0, n, 1/(3*k+2)!); \\ Michel Marcus, Sep 17 2020
A337729
a(n) = (4*n+2)! * Sum_{k=0..n} 1 / (4*k+2)!.
Original entry on oeis.org
1, 361, 1819441, 43710250585, 3210080802962401, 563561785768079119561, 202205968733586788098486801, 132994909755454702268136738753721, 148026526435655214537290625514621562305, 262237873172349351865682580536682974917045801, 704454843460345510903820429747302209179158476142321
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A330045,
A334364,
A337725,
A337726,
A337727,
A337728,
A337730.
-
Table[(4 n + 2)! Sum[1/(4 k + 2)!, {k, 0, n}], {n, 0, 10}]
Table[(4 n + 2)! SeriesCoefficient[(1/2) (Cosh[x] - Cos[x])/(1 - x^4), {x, 0, 4 n + 2}], {n, 0, 10}]
Table[Floor[(1/2) (Cosh[1] - Cos[1]) (4 n + 2)!], {n, 0, 10}]
-
a(n) = (4*n+2)!*sum(k=0, n, 1/(4*k+2)!); \\ Michel Marcus, Sep 17 2020
A337730
a(n) = (4*n+3)! * Sum_{k=0..n} 1 / (4*k+3)!.
Original entry on oeis.org
1, 841, 6660721, 218205219961, 20298322381652065, 4313799472548696853801, 1816972337837511114820981201, 1372104830641374893468212163747161, 1724241814377177346127894133451232399041, 3403694723384093133512770088891935585284510985
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A330045,
A334365,
A337725,
A337726,
A337727,
A337728,
A337729.
-
Table[(4 n + 3)! Sum[1/(4 k + 3)!, {k, 0, n}], {n, 0, 9}]
Table[(4 n + 3)! SeriesCoefficient[(1/2) (Sinh[x] - Sin[x])/(1 - x^4), {x, 0, 4 n + 3}], {n, 0, 9}]
Table[Floor[(1/2) (Sinh[1] - Sin[1]) (4 n + 3)!], {n, 0, 9}]
-
a(n) = (4*n+3)!*sum(k=0, n, 1/(4*k+3)!); \\ Michel Marcus, Sep 17 2020
A349088
a(n) = n! * Sum_{k=0..floor((n-1)/3)} 1 / (3*k+1)!.
Original entry on oeis.org
0, 1, 2, 6, 25, 125, 750, 5251, 42008, 378072, 3780721, 41587931, 499055172, 6487717237, 90828041318, 1362420619770, 21798729916321, 370578408577457, 6670411354394226, 126737815733490295, 2534756314669805900, 53229882608065923900, 1171057417377450325801
Offset: 0
-
Table[n! Sum[1/(3 k + 1)!, {k, 0, Floor[(n - 1)/3]}], {n, 0, 22}]
nmax = 22; CoefficientList[Series[(Exp[x] - 2 Exp[-x/2] Sin[(Pi - 3 Sqrt[3] x)/6])/(3 (1 - x)), {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-6 of 6 results.