cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: George E. Antoniou

George E. Antoniou's wiki page.

George E. Antoniou has authored 33 sequences. Here are the ten most recent ones:

A330987 Alternatively add and half-multiply pairs of the nonnegative integers.

Original entry on oeis.org

1, 3, 9, 21, 17, 55, 25, 105, 33, 171, 41, 253, 49, 351, 57, 465, 65, 595, 73, 741, 81, 903, 89, 1081, 97, 1275, 105, 1485, 113, 1711, 121, 1953, 129, 2211, 137, 2485, 145, 2775, 153, 3081, 161, 3403, 169, 3741, 177, 4095, 185, 4465, 193, 4851, 201, 5253, 209
Offset: 1

Author

George E. Antoniou, Jan 05 2020

Keywords

Comments

In groups of two, add and half-multiply the integers: 0+1, (2*3)/2, 4+5, (6*7)/2, ....
From Bernard Schott, Jan 06 2020: (Start)
The bisection of this sequence gives:
For n odd = 2*k+1, k >= 0: a(2*k+1) = 8*k+1 = A017077(k),
For n even = 2*k, k >= 1: a(2*k) = T(4*k-2) = A000217(4*k-2) = (2*k-1)*(4*k-1) = A033567(k) where T(j) is the j-th triangular number. (End)

Crossrefs

Cf. A330983.
Interspersion of A017077 and A033567 (excluding first term). - Michel Marcus, Jan 06 2020

Programs

  • Mathematica
    a[n_]:=If[OddQ[n],4n-3,(n-1)(2n-1)]; Array[a,53] (* Stefano Spezia, Jan 05 2020 *)
  • PARI
    Vec(x*(1 + 3*x + 6*x^2 + 12*x^3 - 7*x^4 + x^5) / ((1 - x)^3*(1 + x)^3) + O(x^50)) \\ Colin Barker, Jan 06 2020

Formula

From Colin Barker, Jan 05 2020: (Start)
G.f.: x*(1 + 3*x + 6*x^2 + 12*x^3 - 7*x^4 + x^5) / ((1 - x)^3*(1 + x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
a(n) = -1 + 2*(-1)^n - (1/2)*(-1+7*(-1)^n)*n + (1+(-1)^n)*n^2.
(End)
E.g.f.: (1 + 4*x + 2*x^2)*cosh(x) - (3 + x)*sinh(x) - 1. - Stefano Spezia, Jan 05 2020 after Colin Barker

A330983 Alternatively add and multiply pairs of the nonnegative integers.

Original entry on oeis.org

1, 6, 9, 42, 17, 110, 25, 210, 33, 342, 41, 506, 49, 702, 57, 930, 65, 1190, 73, 1482, 81, 1806, 89, 2162, 97, 2550, 105, 2970, 113, 3422, 121, 3906, 129, 4422, 137, 4970, 145, 5550, 153, 6162, 161, 6806, 169, 7482, 177, 8190, 185, 8930, 193, 9702, 201, 10506, 209
Offset: 1

Author

George E. Antoniou, Jan 05 2020

Keywords

Comments

In groups of two, add and multiply the integers: 0+1, 2*3, 4+5, 6*7, ....

Crossrefs

Cf. A330987.
Interspersion of A017077 and A256833. - Michel Marcus, Jan 06 2020

Programs

  • Mathematica
    a[n_]:=If[OddQ[n],4n-3,2(n-1)(2n-1)]; Array[a,53] (* Stefano Spezia, Jan 05 2020 *)
  • PARI
    Vec(x*(1 + 6*x + 6*x^2 + 24*x^3 - 7*x^4 + 2*x^5) / ((1 - x)^3*(1 + x)^3) + O(x^50)) \\ Colin Barker, Jan 07 2020

Formula

From Colin Barker, Jan 05 2020: (Start)
G.f.: x*(1 + 6*x + 6*x^2 + 24*x^3 - 7*x^4 + 2*x^5) / ((1 - x)^3*(1 + x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
a(n) = (1/2)*(-1 + 5*(-1)^n - 2*(1 + 5*(-1)^n)*n + 4*(1+(-1)^n)*n^2).
(End)
E.g.f.: (2 + 4*x*(1 + x))*cosh(x) - (3 + 2*x)*sinh(x) - 2. - Stefano Spezia, Jan 05 2020 after Colin Barker

A097804 a(n) = 3*(2*5^n + 1).

Original entry on oeis.org

9, 33, 153, 753, 3753, 18753, 93753, 468753, 2343753, 11718753, 58593753, 292968753, 1464843753, 7324218753, 36621093753, 183105468753, 915527343753, 4577636718753, 22888183593753, 114440917968753, 572204589843753, 2861022949218753, 14305114746093753
Offset: 0

Author

George E. Antoniou, Aug 25 2004

Keywords

Crossrefs

Programs

Formula

a(0)=9, a(1)=33, a(n) = 6*a(n-1) - 5*a(n-2) for n > 1. - Harvey P. Dale, Dec 17 2012
G.f.: 3*(3-7*x)/((1-x)*(1-5*x)). - Wesley Ivan Hurt, Aug 16 2016

Extensions

More terms from Robert G. Wilson v and Mark Hudson (mrmarkhudson(AT)hotmail.com), Aug 26 2004

A097803 a(n) = 3*(2*n^2 + 1).

Original entry on oeis.org

3, 9, 27, 57, 99, 153, 219, 297, 387, 489, 603, 729, 867, 1017, 1179, 1353, 1539, 1737, 1947, 2169, 2403, 2649, 2907, 3177, 3459, 3753, 4059, 4377, 4707, 5049, 5403, 5769, 6147, 6537, 6939, 7353, 7779, 8217, 8667, 9129, 9603, 10089, 10587, 11097, 11619, 12153, 12699
Offset: 0

Author

George E. Antoniou, Aug 25 2004

Keywords

Comments

a(n) is also the number of Arnoux-Rauzy factors of length (n+1) over a 3-letter alphabet. - Genevieve Paquin (genevieve.paquin(AT)univ-savoie.fr), Nov 07 2008

Crossrefs

Programs

Formula

From Harvey P. Dale, Dec 29 2011: (Start)
a(0)=3, a(1)=9, a(2)=27, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -3*(3*x^2+1)/(x-1)^3. (End)
From Elmo R. Oliveira, Feb 18 2025: (Start)
E.g.f.: 3*exp(x)*(1 + 2*x + 2*x^2).
a(n) = 3*A058331(n). (End)

Extensions

More terms from Robert G. Wilson v and Mark Hudson (mrmarkhudson(AT)hotmail.com), Aug 26 2004

A097802 a(n) = 3*(25*n + 1).

Original entry on oeis.org

3, 78, 153, 228, 303, 378, 453, 528, 603, 678, 753, 828, 903, 978, 1053, 1128, 1203, 1278, 1353, 1428, 1503, 1578, 1653, 1728, 1803, 1878, 1953, 2028, 2103, 2178, 2253, 2328, 2403, 2478, 2553, 2628, 2703, 2778, 2853, 2928, 3003, 3078, 3153, 3228, 3303, 3378, 3453, 3528
Offset: 0

Author

George E. Antoniou, Aug 25 2004

Keywords

Crossrefs

Cf. A158060.

Programs

Formula

From Elmo R. Oliveira, May 25 2025: (Start)
G.f.: 3*(1 + 24*x)/(1-x)^2.
E.g.f.: 3*exp(x)*(1 + 25*x).
a(n) = 3*A158060(n) for n > 0.
a(n) = 2*a(n-1) - a(n-2). (End)

Extensions

More terms from Robert G. Wilson v and Mark Hudson (mrmarkhudson(AT)hotmail.com), Aug 26 2004
a(45)-a(47) from Elmo R. Oliveira, May 25 2025

A066335 Binary string which equals n when 1's and 2's bits have negative weights.

Original entry on oeis.org

0, 111, 110, 101, 100, 1011, 1010, 1001, 1000, 1111, 1110, 1101, 1100, 10011, 10010, 10001, 10000, 10111, 10110, 10101, 10100, 11011, 11010, 11001, 11000, 11111, 11110, 11101, 11100, 100011, 100010, 100001, 100000, 100111, 100110, 100101
Offset: 0

Author

George E. Antoniou, Dec 15 2001

Keywords

Examples

			For example: 4-2-1 = 1, so a(1) = 111; 4-2+0 = 2 so a(2) = 110; 4+0-1 = 3 so a(3) = 101; 4+0+0 = 4 so a(4) = 100, etc.
		

References

  • Morris M. Mano, Digital Design, Prentice Hall, 2002. p. 20.

Crossrefs

A120634 is the decimal equivalent of these numbers in binary.

Extensions

More terms from Sascha Kurz, Jan 28 2003
Corrected and extended by Joshua Zucker, Jun 21 2006

A066104 a(2n) = 2n, a(2n+1) = 4(n+1).

Original entry on oeis.org

0, 4, 2, 8, 4, 12, 6, 16, 8, 20, 10, 24, 12, 28, 14, 32, 16, 36, 18, 40, 20, 44, 22, 48, 24, 52, 26, 56, 28, 60, 30, 64, 32, 68, 34, 72, 36, 76, 38, 80, 40, 84, 42, 88, 44, 92, 46, 96, 48, 100, 50, 104, 52, 108, 54, 112, 56, 116, 58, 120, 60, 124, 62, 128, 64, 132, 66, 136
Offset: 0

Author

George E. Antoniou, Dec 04 2001

Keywords

Comments

Fourth column of table A210530 for n>0. - Boris Putievskiy, Jan 29 2013

Crossrefs

Programs

  • Mathematica
    Table[(3*n+2-(n+2)*(-1)^n)/2, {n,0,50}] (* or *) LinearRecurrence[{0, 2, 0, -1}, {0, 4, 2, 8}, 50] (* G. C. Greubel, Dec 24 2016 *)
  • PARI
    { for (n=0, 1000, if(n%2, a=2*n + 2, a=n); write("b066104.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 14 2009
    
  • PARI
    concat([0], Vec(2*x*(x+2)/(1-x^2)^2 + O(x^50))) \\ G. C. Greubel, Dec 24 2016

Formula

a(n) = 2*A065423(n+1).
O.g.f.: 2*x(2+x)/(1-x^2)^2. - Len Smiley, Dec 06 2001
a(n) = (3*n+2-(n+2)*(-1)^n)/2. - Boris Putievskiy, Jan 29 2013

A066336 Decimal equivalent of A066334.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 14, 15, -1, -1, -1, -1, -1, -1, 16, 17, 18, 19, 20, 21, 22, 23, 30, 31, -1, -1, -1, -1, -1, -1, 32, 33, 34, 35, 36, 37, 38, 39, 46, 47, -1, -1, -1, -1, -1, -1, 48, 49, 50, 51, 52, 53, 54, 55, 62, 63, -1, -1, -1, -1, -1, -1, 64, 65, 66, 67, 68, 69, 70, 71, 78, 79, -1, -1, -1, -1, -1, -1, 80, 81, 82, 83, 84, 85, 86
Offset: 0

Author

George E. Antoniou, Dec 15 2001

Keywords

Extensions

Corrected and extended by Joshua Zucker, Jun 21 2006

A066338 Decimal equivalent of A066330.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, -1, -1, -1, 16, 17, 18, 19, 20, 24, 25, 26, 27, 28, 29, 30, 31, -1, -1, -1, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 46, 47, -1, -1, -1, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 61, 62, 63, -1, -1, -1, 64, 65, 66, 67, 68, 72, 73, 74, 75, 76, 77, 78, 79, -1, -1, -1, 80, 81, 82, 83, 84, 88, 89
Offset: 0

Author

George E. Antoniou, Dec 15 2001

Keywords

Extensions

Corrected by Sascha Kurz, Feb 02 2003
More terms from Joshua Zucker, Jun 21 2006

A066334 Binary string which equals n when 1's, 2's, 4's and 8's bits have weights 1, 2, 4, 2 respectively, while the other bits have their usual weights. -1 if no such string exists.

Original entry on oeis.org

0, 1, 10, 11, 100, 101, 110, 111, 1110, 1111, -1, -1, -1, -1, -1, -1, 10000, 10001, 10010, 10011, 10100, 10101, 10110, 10111, 11110, 11111, -1, -1, -1, -1, -1, -1, 100000, 100001, 100010, 100011, 100100, 100101, 100110, 100111, 101110, 101111, -1, -1, -1, -1, -1, -1, 110000, 110001, 110010, 110011
Offset: 0

Author

George E. Antoniou, Dec 15 2001

Keywords

References

  • Morris M. Mano, Digital Design, Prentice Hall, 2002. p. 20.

Crossrefs

Cf. A066335.

Extensions

More terms from Joshua Zucker, Jun 21 2006