cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100732 a(n) = (3*n)!.

Original entry on oeis.org

1, 6, 720, 362880, 479001600, 1307674368000, 6402373705728000, 51090942171709440000, 620448401733239439360000, 10888869450418352160768000000, 265252859812191058636308480000000
Offset: 0

Views

Author

Ralf Stephan, Dec 08 2004

Keywords

Comments

a(n) equals (-1)^n times the determinant of the (3n+1) X (3n+1) matrix with consecutive integers from 1 to 3n+1 along the main diagonal, consecutive integers from 2 to 3n+1 along the superdiagonal, consecutive integers from 1 to 3n along the subdiagonal, and 1's everywhere else (see Mathematica code below). - John M. Campbell, Jul 12 2011

Crossrefs

Programs

  • Haskell
    a100732 = a000142 . a008585  -- Reinhard Zumkeller, Feb 19 2013
  • Magma
    [Factorial(3*n): n in [0..15]]; // Vincenzo Librandi, Sep 24 2011
    
  • Mathematica
    Table[(-1)^n*Det[Array[KroneckerDelta[#1, #2]*(#1 - 1) + KroneckerDelta[#1, #2 - 1]*(#1) + KroneckerDelta[#1, #2 + 1]*(#1 - 2) + 1 &, {3*n + 1, 3*n + 1}]], {n, 0, 24}] (* John M. Campbell, Jul 12 2011 *)
    (3Range[0,10])! (* Harvey P. Dale, Sep 23 2011 *)
  • Sage
    [factorial(3*n) for n in range(0, 11)] # Peter Luschny, Jun 06 2016
    

Formula

a(n) = A000142(A008585(n)).
E.g.f.: 1/(1-x^3).
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ sqrt(2*Pi)*3^(3*n+1/2)*n^(3*n+1/2)/exp(3*n).
Sum_{n>=0} 1/a(n) = (exp(3/2) + 2*cos(sqrt(3)/2))/(3*exp(1/2)) = A143819. (End)
Sum_{n>=0} (-1)^n/a(n) = (1 + 2*exp(3/2)*cos(sqrt(3)/2))/(3*e). - Amiram Eldar, Feb 14 2021
a(n) = A143084(2n,n). - Alois P. Heinz, Jul 12 2024

A374574 a(n) = Sum_{j=n..2n} j!.

Original entry on oeis.org

1, 3, 32, 870, 46224, 4037880, 522956160, 93928267440, 22324392518400, 6780385526302080, 2561327494111411200, 1177652997443424902400, 647478071469567800985600, 419450149241406188889984000, 316196664211373618844934963200, 274410818470142134209609852672000
Offset: 0

Views

Author

Alois P. Heinz, Jul 11 2024

Keywords

Crossrefs

Row sums of A143084.
Cf. A000142, A100822, A143122, A296591 (the same for product).
Diagonal of A054115, A211370.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 3, 32][n+1],
         ((16*n^3-16*n^2-n+2)*a(n-1)-(n-1)*(16*n^3-20*n^2+6*n-1)
          *a(n-2)+2*(2*n-1)*(4*n+1)*(n-1)*(n-2)*a(n-3))/(4*n-3))
        end:
    seq(a(n), n=0..15);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1,
          a(n-1) -(n-1)! +(2*n-1)! +(2*n)!)
        end:
    seq(a(n), n=0..15);

Formula

a(n) = a(n-1) - (n-1)! + (2*n-1)! + (2*n)! with a(0) = 1.
a(n) = Sum_{j=0..n} (n + j)!.
a(n) = A100822(2n,n).
a(n) = A143122(2n,n).

A370418 Triangle read by rows. T(n, k) = (n - k)! * (n + k)!.

Original entry on oeis.org

1, 1, 2, 4, 6, 24, 36, 48, 120, 720, 576, 720, 1440, 5040, 40320, 14400, 17280, 30240, 80640, 362880, 3628800, 518400, 604800, 967680, 2177280, 7257600, 39916800, 479001600, 25401600, 29030400, 43545600, 87091200, 239500800, 958003200, 6227020800, 87178291200
Offset: 0

Views

Author

Peter Luschny, Feb 27 2024

Keywords

Examples

			Triangle starts:
[0]      1;
[1]      1,      2;
[2]      4,      6,     24;
[3]     36,     48,    120,     720;
[4]    576,    720,   1440,    5040,   40320;
[5]  14400,  17280,  30240,   80640,  362880,  3628800;
[6] 518400, 604800, 967680, 2177280, 7257600, 39916800, 479001600;
		

Crossrefs

Cf. A010050 (main diagonal), A009445 (subdiagonal), A001044 (column 0), A175430 (column 1), A024420 (bisection is alternating sum).

Programs

  • Maple
    T := (n, k) -> (n - k)! * (n + k)!:
    seq(seq(T(n, k), k = 0..n), n = 0..7);
  • Mathematica
    Table[(n - k)!*(n + k)!, {n, 0, 7}, {k, 0, n}] // Flatten (* Michael De Vlieger, Mar 05 2024 *)

Formula

Sum_{k=0..n} (-1)^k*T(n, k) = n!^2 / 2 + (-1)^n * (2*n + 2)! / (2*n + 2)^2.
Showing 1-3 of 3 results.