A100734
a(n) = (5*n)!.
Original entry on oeis.org
1, 120, 3628800, 1307674368000, 2432902008176640000, 15511210043330985984000000, 265252859812191058636308480000000, 10333147966386144929666651337523200000000
Offset: 0
A268505
a(n) = Product_{k=0..n} (4*k)!.
Original entry on oeis.org
1, 24, 967680, 463520268288000, 9698137182219213471744000000, 23594617426193665303453830729600860160000000000, 14639242671589099207353038379393488170313478620292159897600000000000000
Offset: 0
-
Table[Product[(4*k)!,{k,0,n}],{n,0,8}]
-
{a(n) = prod(k=1, n, (4*k)!)} \\ Seiichi Manyama, Jul 06 2019
A100732
a(n) = (3*n)!.
Original entry on oeis.org
1, 6, 720, 362880, 479001600, 1307674368000, 6402373705728000, 51090942171709440000, 620448401733239439360000, 10888869450418352160768000000, 265252859812191058636308480000000
Offset: 0
-
a100732 = a000142 . a008585 -- Reinhard Zumkeller, Feb 19 2013
-
[Factorial(3*n): n in [0..15]]; // Vincenzo Librandi, Sep 24 2011
-
Table[(-1)^n*Det[Array[KroneckerDelta[#1, #2]*(#1 - 1) + KroneckerDelta[#1, #2 - 1]*(#1) + KroneckerDelta[#1, #2 + 1]*(#1 - 2) + 1 &, {3*n + 1, 3*n + 1}]], {n, 0, 24}] (* John M. Campbell, Jul 12 2011 *)
(3Range[0,10])! (* Harvey P. Dale, Sep 23 2011 *)
-
[factorial(3*n) for n in range(0, 11)] # Peter Luschny, Jun 06 2016
A330045
Expansion of e.g.f. exp(x) / (1 - x^4).
Original entry on oeis.org
1, 1, 1, 1, 25, 121, 361, 841, 42001, 365905, 1819441, 6660721, 498971881, 6278929801, 43710250585, 218205219961, 21795091762081, 358652470233121, 3210080802962401, 20298322381652065, 2534333270094778681, 51516840824285500441, 563561785768079119561
Offset: 0
-
nmax = 22; CoefficientList[Series[Exp[x]/(1 - x^4), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[n!/(n - 4 k)!, {k, 0, Floor[n/4]}], {n, 0, 22}]
A195390
a(n) = (6*n)!.
Original entry on oeis.org
1, 720, 479001600, 6402373705728000, 620448401733239439360000, 265252859812191058636308480000000, 371993326789901217467999448150835200000000, 1405006117752879898543142606244511569936384000000000, 12413915592536072670862289047373375038521486354677760000000000
Offset: 0
-
[Factorial(6*n): n in [0..10]];
-
(6*Range[0,10])! (* Harvey P. Dale, Dec 16 2013 *)
A337727
a(n) = (4*n)! * Sum_{k=0..n} 1 / (4*k)!.
Original entry on oeis.org
1, 25, 42001, 498971881, 21795091762081, 2534333270094778681, 646315807872650838343345, 317599587988620621961919733001, 274101148417699141578015206369183041, 387502275541069630431671657548241448722521, 849931991080760484603611346800010863970028660561
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A100733,
A330045,
A332890,
A337725,
A337726,
A337728,
A337729,
A337730.
-
Table[(4 n)! Sum[1/(4 k)!, {k, 0, n}], {n, 0, 10}]
Table[(4 n)! SeriesCoefficient[(1/2) (Cos[x] + Cosh[x])/(1 - x^4), {x, 0, 4 n}], {n, 0, 10}]
Table[Floor[(1/2) (Cos[1] + Cosh[1]) (4 n)!], {n, 0, 10}]
-
a(n) = (4*n)!*sum(k=0, n, 1/(4*k)!); \\ Michel Marcus, Sep 17 2020
A139541
There are 4*n players who wish to play bridge at n tables. Each player must have another player as partner and each pair of partners must have another pair as opponents. The choice of partners and opponents can be made in exactly a(n)=(4*n)!/(n!*8^n) different ways.
Original entry on oeis.org
1, 3, 315, 155925, 212837625, 618718975875, 3287253918823875, 28845653137679503125, 388983632561608099640625, 7637693625347175036443671875, 209402646126143497974176151796875, 7752714167528210725497923667975703125, 377130780679409810741846496828678078515625
Offset: 0
- G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Appendix: Problem 203.1, p164.
A195391
a(n) = (7*n)!.
Original entry on oeis.org
1, 5040, 87178291200, 51090942171709440000, 304888344611713860501504000000, 10333147966386144929666651337523200000000, 1405006117752879898543142606244511569936384000000000, 608281864034267560872252163321295376887552831379210240000000000, 710998587804863451854045647463724949736497978881168458687447040000000000000
Offset: 0
A195392
a(n) = (8*n)!.
Original entry on oeis.org
1, 40320, 20922789888000, 620448401733239439360000, 263130836933693530167218012160000000, 815915283247897734345611269596115894272000000000, 12413915592536072670862289047373375038521486354677760000000000, 710998587804863451854045647463724949736497978881168458687447040000000000000
Offset: 0
-
[Factorial(8*n): n in [0..10]];
-
(8*Range[0, 8])! (* Paolo Xausa, Aug 12 2025 *)
A381162
a(n) = (8*n)!/((n!)^4*(4*n)!).
Original entry on oeis.org
1, 1680, 32432400, 999456057600, 37905932634570000, 1617318175088527591680, 74451445170005824874553600, 3614146643656788883257309696000, 182458061523203642337177421198794000, 9493111901274733909567003010522405280000, 505860213332178847817809654781948251947782400
Offset: 0
Showing 1-10 of 14 results.
Comments