cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A100734 a(n) = (5*n)!.

Original entry on oeis.org

1, 120, 3628800, 1307674368000, 2432902008176640000, 15511210043330985984000000, 265252859812191058636308480000000, 10333147966386144929666651337523200000000
Offset: 0

Views

Author

Ralf Stephan, Dec 08 2004

Keywords

Crossrefs

Programs

Formula

E.g.f.: 1/(1-x^5).
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ sqrt(2*Pi)*5^(5*n + 1/2)*n^(5*n + 1/2)/exp(5*n).
Sum_{n>=0} 1/a(n) = A269296. (End)

A268505 a(n) = Product_{k=0..n} (4*k)!.

Original entry on oeis.org

1, 24, 967680, 463520268288000, 9698137182219213471744000000, 23594617426193665303453830729600860160000000000, 14639242671589099207353038379393488170313478620292159897600000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 16 2016

Keywords

Comments

Partial products of A100733. - Michel Marcus, Jul 06 2019

Crossrefs

Programs

  • Mathematica
    Table[Product[(4*k)!,{k,0,n}],{n,0,8}]
  • PARI
    {a(n) = prod(k=1, n, (4*k)!)} \\ Seiichi Manyama, Jul 06 2019

Formula

a(n) ~ Gamma(1/4)^(1/2) * 2^(5/6 + 11*n/2 + 4*n^2) * exp(1/48 - 5*n/2 - 3*n^2) * n^(29/48 + 5*n/2 + 2*n^2) * Pi^(1/4 + n/2) / A^(1/4), where A = A074962 is the Glaisher-Kinkelin constant.
a(n) = A^(15/4) * sqrt(Gamma(1/4)) * exp(-5/16) * 2^(4*n^2 + 7*n/2 - 5/12) * BarnesG(n + 5/4) * BarnesG(n + 3/2) * BarnesG(n + 7/4) * BarnesG(n+2) / Pi^(3*n/2 + 1). - Vaclav Kotesovec, Apr 23 2024

A100732 a(n) = (3*n)!.

Original entry on oeis.org

1, 6, 720, 362880, 479001600, 1307674368000, 6402373705728000, 51090942171709440000, 620448401733239439360000, 10888869450418352160768000000, 265252859812191058636308480000000
Offset: 0

Views

Author

Ralf Stephan, Dec 08 2004

Keywords

Comments

a(n) equals (-1)^n times the determinant of the (3n+1) X (3n+1) matrix with consecutive integers from 1 to 3n+1 along the main diagonal, consecutive integers from 2 to 3n+1 along the superdiagonal, consecutive integers from 1 to 3n along the subdiagonal, and 1's everywhere else (see Mathematica code below). - John M. Campbell, Jul 12 2011

Crossrefs

Programs

  • Haskell
    a100732 = a000142 . a008585  -- Reinhard Zumkeller, Feb 19 2013
  • Magma
    [Factorial(3*n): n in [0..15]]; // Vincenzo Librandi, Sep 24 2011
    
  • Mathematica
    Table[(-1)^n*Det[Array[KroneckerDelta[#1, #2]*(#1 - 1) + KroneckerDelta[#1, #2 - 1]*(#1) + KroneckerDelta[#1, #2 + 1]*(#1 - 2) + 1 &, {3*n + 1, 3*n + 1}]], {n, 0, 24}] (* John M. Campbell, Jul 12 2011 *)
    (3Range[0,10])! (* Harvey P. Dale, Sep 23 2011 *)
  • Sage
    [factorial(3*n) for n in range(0, 11)] # Peter Luschny, Jun 06 2016
    

Formula

a(n) = A000142(A008585(n)).
E.g.f.: 1/(1-x^3).
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ sqrt(2*Pi)*3^(3*n+1/2)*n^(3*n+1/2)/exp(3*n).
Sum_{n>=0} 1/a(n) = (exp(3/2) + 2*cos(sqrt(3)/2))/(3*exp(1/2)) = A143819. (End)
Sum_{n>=0} (-1)^n/a(n) = (1 + 2*exp(3/2)*cos(sqrt(3)/2))/(3*e). - Amiram Eldar, Feb 14 2021
a(n) = A143084(2n,n). - Alois P. Heinz, Jul 12 2024

A330045 Expansion of e.g.f. exp(x) / (1 - x^4).

Original entry on oeis.org

1, 1, 1, 1, 25, 121, 361, 841, 42001, 365905, 1819441, 6660721, 498971881, 6278929801, 43710250585, 218205219961, 21795091762081, 358652470233121, 3210080802962401, 20298322381652065, 2534333270094778681, 51516840824285500441, 563561785768079119561
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2019

Keywords

Crossrefs

Outer diagonal of A158777.

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[x]/(1 - x^4), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[n!/(n - 4 k)!, {k, 0, Floor[n/4]}], {n, 0, 22}]

Formula

G.f.: Sum_{k>=0} (4*k)! * x^(4*k) / (1 - x)^(4*k + 1).
a(0) = a(1) = a(2) = a(3) = 1; a(n) = n*(n - 1)*(n - 2)*(n - 3)*a(n - 4) + 1.
a(n) = Sum_{k=0..floor(n/4)} n! / (n - 4*k)!.
a(n) ~ n! * (2*cos(Pi*n/2 - 1) + exp(1) + (-1)^n*exp(-1))/4. - Vaclav Kotesovec, Apr 18 2020

A195390 a(n) = (6*n)!.

Original entry on oeis.org

1, 720, 479001600, 6402373705728000, 620448401733239439360000, 265252859812191058636308480000000, 371993326789901217467999448150835200000000, 1405006117752879898543142606244511569936384000000000, 12413915592536072670862289047373375038521486354677760000000000
Offset: 0

Views

Author

Vincenzo Librandi, Sep 24 2011

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(6*n): n in [0..10]];
  • Mathematica
    (6*Range[0,10])! (* Harvey P. Dale, Dec 16 2013 *)

Formula

From Amiram Eldar, Apr 03 2021: (Start)
a(n) = A000142(A008588(n)).
Sum_{n>=0} 1/a(n) = A332892. (End)

A337727 a(n) = (4*n)! * Sum_{k=0..n} 1 / (4*k)!.

Original entry on oeis.org

1, 25, 42001, 498971881, 21795091762081, 2534333270094778681, 646315807872650838343345, 317599587988620621961919733001, 274101148417699141578015206369183041, 387502275541069630431671657548241448722521, 849931991080760484603611346800010863970028660561
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(4 n)! Sum[1/(4 k)!, {k, 0, n}], {n, 0, 10}]
    Table[(4 n)! SeriesCoefficient[(1/2) (Cos[x] + Cosh[x])/(1 - x^4), {x, 0, 4 n}], {n, 0, 10}]
    Table[Floor[(1/2) (Cos[1] + Cosh[1]) (4 n)!], {n, 0, 10}]
  • PARI
    a(n) = (4*n)!*sum(k=0, n, 1/(4*k)!); \\ Michel Marcus, Sep 17 2020

Formula

E.g.f.: (1/2) * (cos(x) + cosh(x)) / (1 - x^4) = 1 + 25*x^4/4! + 42001*x^8/8! + 498971881*x^12/12! + ...
a(n) = floor(c * (4*n)!), where c = (cos(1) + cosh(1)) / 2 = A332890.

A139541 There are 4*n players who wish to play bridge at n tables. Each player must have another player as partner and each pair of partners must have another pair as opponents. The choice of partners and opponents can be made in exactly a(n)=(4*n)!/(n!*8^n) different ways.

Original entry on oeis.org

1, 3, 315, 155925, 212837625, 618718975875, 3287253918823875, 28845653137679503125, 388983632561608099640625, 7637693625347175036443671875, 209402646126143497974176151796875, 7752714167528210725497923667975703125, 377130780679409810741846496828678078515625
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 25 2008

Keywords

Comments

From Karol A. Penson, Oct 05 2009: (Start)
Integral representation as n-th moment of a positive function on a positive semi-axis (solution of the Stieltjes moment problem), in Maple notation:
a(n)=int(x^n*((1/4)*sqrt(2)*(Pi^(3/2)*2^(1/4)*hypergeom([], [1/2, 3/4], -(1/32)*x)*sqrt(x)-2*Pi*hypergeom([], [3/4, 5/4], -(1/32)*x)*GAMMA(3/4)*x^(3/4)+sqrt(Pi)*GAMMA(3/4)^2*2^(1/4)*hypergeom([], [5/4, 3/2],-(1/32)*x)*x)/(Pi^(3/2)*GAMMA(3/4)*x^(5/4))), x=0..infinity), n=0,1... .
This solution may not be unique. (End)

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Appendix: Problem 203.1, p164.

Crossrefs

Programs

Formula

a(n) = (4*n)!/(n!*8^n).
a(n) = A001147(n)*A001147(2*n).
a(n) = A008977(n)*(A049606(n)/A001316(n))^3. - Reinhard Zumkeller, Apr 28 2008

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 07 2020

A195391 a(n) = (7*n)!.

Original entry on oeis.org

1, 5040, 87178291200, 51090942171709440000, 304888344611713860501504000000, 10333147966386144929666651337523200000000, 1405006117752879898543142606244511569936384000000000, 608281864034267560872252163321295376887552831379210240000000000, 710998587804863451854045647463724949736497978881168458687447040000000000000
Offset: 0

Views

Author

Vincenzo Librandi, Sep 24 2011

Keywords

Crossrefs

Programs

A195392 a(n) = (8*n)!.

Original entry on oeis.org

1, 40320, 20922789888000, 620448401733239439360000, 263130836933693530167218012160000000, 815915283247897734345611269596115894272000000000, 12413915592536072670862289047373375038521486354677760000000000, 710998587804863451854045647463724949736497978881168458687447040000000000000
Offset: 0

Views

Author

Vincenzo Librandi, Sep 24 2011

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(8*n): n in [0..10]];
  • Mathematica
    (8*Range[0, 8])! (* Paolo Xausa, Aug 12 2025 *)

A381162 a(n) = (8*n)!/((n!)^4*(4*n)!).

Original entry on oeis.org

1, 1680, 32432400, 999456057600, 37905932634570000, 1617318175088527591680, 74451445170005824874553600, 3614146643656788883257309696000, 182458061523203642337177421198794000, 9493111901274733909567003010522405280000, 505860213332178847817809654781948251947782400
Offset: 0

Views

Author

Stefano Spezia, Feb 15 2025

Keywords

Comments

Calabi-Yau series number 7.

Crossrefs

Programs

  • Mathematica
    a[n_]:=(8n)!/((n!)^4*(4n)!); Array[a,11,0]

Formula

G.f.: hypergeom([1/8, 3/8, 5/8, 7/8], [1, 1, 1], 2^16*x).
a(n) ~ 2^(16*n - 3/2) / (Pi^2*n^2). - Vaclav Kotesovec, May 29 2025
Showing 1-10 of 14 results. Next