A075082
Numbers n such that n! is a product of distinct factorials k!*l!*m!*... with k, l, m, etc. < n.
Original entry on oeis.org
1, 6, 10, 12, 16, 24, 48, 120, 144, 240, 288, 720, 1440, 2880, 4320, 5040, 5760, 8640, 10080, 17280, 30240, 34560, 40320, 60480, 80640, 86400, 103680, 120960, 172800, 207360, 241920, 362880, 483840, 518400, 604800, 725760, 967680, 1036800
Offset: 1
1! = 0!, 6! = 5!*3!, 10! = 7!*6!, 12! = 11!*3!*2!, 16! = 14!*5!*2!,
24! = 23!*4!, 48! = 47!*4!*2!, 120! = 119!*5!, 144! = 143! *4!*3!,
240! = 239!*5!*2!, 288! = 287!*4!*3!*2!, 720! = 719!*6!,
1440! = 1439!6!*2!, etc.
- R. K. Guy, Unsolved Problems in Number Theory, B23.
-
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) s = Sort[ Table[ Times @@ Factorial /@ UnrankSubset[n, Table [i, {i, 2, 12}]], {n, 2047}]]; f[n_] := Block[{k = Prime[ PrimePi [n]]}, While[k < n && Position[s, Product[i, {i, k + 1, n}]] == {}, k+ + ]; If[k == n, 0, k]]; Do[a = f[n]; If[a != 0, Print[{n, a}]], {n, 3, 1210000}] (* Robert G. Wilson v, Jun 20 2005 *)
A003135
n! is a nontrivial product of factorials. It is conjectured that the list is complete.
Original entry on oeis.org
9! = 2! * 3! * 3! * 7! and 7 < 9-1, so 9 is in the sequence.
10! = 6! * 7! or 10! = 3! * 5! * 7! and 7 < 10-1, so 10 is in the sequence.
16! = 2! * 5! * 14! and 14 < 16-1, so 16 is in the sequence.
- R. K. Guy, "Unsolved Problems in Number Theory", section B23.
A109095
Numbers N such that N! is the product of exactly two smaller factorials (larger than 1).
Original entry on oeis.org
6, 10, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000, 25852016738884976640000
Offset: 1
10! = 6! * 7!, so 10 is in the sequence.
- Richard K. Guy, Unsolved Problems in Number Theory, B23 Equal products of factorials, Springer, Third Edition, 2004, p. 123.
- Laurent Habsieger, Explicit bounds for the Diophantine equation A!B! = C!, Fibonacci Quarterly (2019), 57, 1.
A109096
Numbers n such that n! is the product of exactly three smaller factorials.
Original entry on oeis.org
4, 10, 12, 16, 36, 48, 144, 240, 576, 720, 1440, 2880, 4320, 10080, 14400, 17280, 30240, 80640, 86400
Offset: 1
144! = 3! * 4! * 143!, so 144 is in the sequence.
A109097
Numbers n such that n! is the product of exactly four smaller factorials.
Original entry on oeis.org
8, 9, 24, 72, 96, 216, 288, 480, 864, 1152, 1440, 2880, 3456, 4320, 5760, 8640, 13824, 17280, 20160, 25920, 28800, 34560, 60480, 69120, 86400
Offset: 1
86400! = 3! * 5! * 5! * 86399!, so 86400 is in the sequence.
A109098
Numbers n such that n! is the product of exactly 5 smaller factorials (greater than 1).
Original entry on oeis.org
16, 48, 144, 192, 432, 576, 960, 1296, 1728, 2304, 2880, 5184, 5760, 6912, 8640, 11520, 17280, 20736, 25920, 27648, 34560, 40320, 51840, 57600, 69120, 82944
Offset: 1
144! = 2! * 2! * 3! * 3! * 143!, so 144 is in the sequence.
A109100
Numbers n such that n! is the product of exactly 2 smaller factorials (greater than 1).
Original entry on oeis.org
10, 16, 24, 48, 96, 144, 192, 288, 384, 720, 768, 864, 1440, 1536, 1728, 3072, 4320, 5184, 6144, 8640, 10368, 12288, 24576, 25920, 31104, 40320, 49152, 51840, 62208, 80640, 86400, 98304
Offset: 1
10! = 3! * 5! * 7! = 6! * 7!, so 10 is in the sequence.
Cf.
A034878,
A001013,
A003135,
A058295,
A075082,
A109095,
A109096,
A109097,
A109098,
A109100,
A109101,
A109102,
A109103.
A109101
Numbers n such that n! is the product of exactly 3 smaller factorials (greater than 1).
Original entry on oeis.org
576, 1152, 2304, 2880, 3456, 4608, 5760, 6912, 9216, 11520, 18432, 20736, 23040, 36864, 41472, 46080, 73728, 92160
Offset: 1
Cf.
A034878,
A001013,
A003135,
A058295,
A075082,
A109095,
A109096,
A109097,
A109098,
A109099,
A109100,
A109102,
A109103.
A109102
Numbers n such that n! is the product of exactly 4 smaller factorials (greater than 1).
Original entry on oeis.org
13824, 17280, 27648, 34560, 55296, 82944
Offset: 1
Cf.
A034878,
A001013,
A003135,
A058295,
A075082,
A109095,
A109096,
A109097,
A109098,
A109099,
A109100,
A109101,
A109103.
A109099
Numbers n such that n! can be expressed as the product of smaller factorials > 2.
Original entry on oeis.org
6, 10, 24, 36, 120, 144, 216, 576, 720, 864, 1296, 2880, 3456, 4320, 5040, 5184, 7776, 13824, 14400, 17280, 20736, 25920, 30240, 31104, 40320, 46656, 69120, 82944, 86400
Offset: 1
86400! = 5! * 6! * 86399!, so 86400 is in the sequence.
Showing 1-10 of 18 results.
Comments