A109095 Numbers N such that N! is the product of exactly two smaller factorials (larger than 1).
6, 10, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000, 25852016738884976640000
Offset: 1
Keywords
Examples
10! = 6! * 7!, so 10 is in the sequence.
References
- Richard K. Guy, Unsolved Problems in Number Theory, B23 Equal products of factorials, Springer, Third Edition, 2004, p. 123.
- Laurent Habsieger, Explicit bounds for the Diophantine equation A!B! = C!, Fibonacci Quarterly (2019), 57, 1.
Links
- Paul Erdős, Problems and results on number theoretic properties of consecutive integers and related questions, Proc. 5th Manitoba Conf. Numerical Math., Congress. Num. 16 (1975), 25-44.
- Laurent Habsieger, Explicit Bounds For The Diophantine Equation A!B! = C!, arXiv:1903.08370 [math.NT], 2019.
Programs
-
PARI
is_A109095(n) = my(m=1, f=n!); while(n-->m, while(n!
2)); select(is_A109095, [0..777]) \\ M. F. Hasler, Jan 19 2023
Extensions
Definition corrected by Jon E. Schoenfield, Jul 02 2010
More terms from M. F. Hasler, Jan 19 2023
Comments