cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A325509 Number of factorizations of n! into factorial numbers > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 08 2019

Keywords

Examples

			n = 10:
  (6*120*5040)
  (720*5040)
  (3628800)
n = 16:
  (2*2*2*2*1307674368000)
  (2*120*87178291200)
  (20922789888000)
n = 24:
  (2*2*6*25852016738884976640000)
  (24*25852016738884976640000)
  (620448401733239439360000)
		

Crossrefs

Programs

  • Mathematica
    facs[n_,u_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d,u],Min@@#>=d&]],{d,Intersection[u,Rest[Divisors[n]]]}]];
    Table[Length[facs[n!,Rest[Array[#!&,n]]]],{n,15}]

Formula

a(n) = 1 + A034876(n).

Extensions

More terms from Alois P. Heinz, May 08 2019

A109100 Numbers n such that n! is the product of exactly 2 smaller factorials (greater than 1).

Original entry on oeis.org

10, 16, 24, 48, 96, 144, 192, 288, 384, 720, 768, 864, 1440, 1536, 1728, 3072, 4320, 5184, 6144, 8640, 10368, 12288, 24576, 25920, 31104, 40320, 49152, 51840, 62208, 80640, 86400, 98304
Offset: 1

Views

Author

Jud McCranie, Jun 19 2005

Keywords

Examples

			10! = 3! * 5! * 7! = 6! * 7!, so 10 is in the sequence.
		

Crossrefs

A109101 Numbers n such that n! is the product of exactly 3 smaller factorials (greater than 1).

Original entry on oeis.org

576, 1152, 2304, 2880, 3456, 4608, 5760, 6912, 9216, 11520, 18432, 20736, 23040, 36864, 41472, 46080, 73728, 92160
Offset: 1

Views

Author

Jud McCranie, Jun 19 2005

Keywords

Crossrefs

A109103 Smallest a(n) such that a(n)! can be expressed as the product of smaller factorials, using n distinct factorials greater than 1 (with repetitions allowed).

Original entry on oeis.org

4, 9, 288, 34560
Offset: 2

Views

Author

Jud McCranie, Jun 19 2005

Keywords

Examples

			34560! = 2! * 3! * 4! * 5! * 34559!, using five different factorials, so a(5)=34560.
		

Crossrefs

A109104 Numbers n such that n! can be expressed as the product of the factorials of prime numbers, repetitions allowed.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 24, 32, 48, 72, 128, 192, 240, 384, 432, 480, 720, 864, 1152, 1440, 2592, 2880, 5040, 6144, 6912, 8192, 10080, 11520, 15360, 15552, 23040, 25920, 27648, 51840, 62208, 69120, 73728, 86400
Offset: 1

Views

Author

Jud McCranie, Jun 19 2005

Keywords

Examples

			10! = 3! * 5! * 7!, so 10 is in the sequence.
		

Crossrefs

Showing 1-5 of 5 results.