cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A115627 Irregular triangle read by rows: T(n,k) = multiplicity of prime(k) as a divisor of n!.

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 1, 4, 2, 1, 4, 2, 1, 1, 7, 2, 1, 1, 7, 4, 1, 1, 8, 4, 2, 1, 8, 4, 2, 1, 1, 10, 5, 2, 1, 1, 10, 5, 2, 1, 1, 1, 11, 5, 2, 2, 1, 1, 11, 6, 3, 2, 1, 1, 15, 6, 3, 2, 1, 1, 15, 6, 3, 2, 1, 1, 1, 16, 8, 3, 2, 1, 1, 1, 16, 8, 3, 2, 1, 1, 1, 1
Offset: 2

Views

Author

Keywords

Comments

The factorization of n! is n! = 2^T(n,1)*3^T(n,2)*...*p_(pi(n))^T(n,pi(n)) where p_k = k-th prime, pi(n) = A000720(n).
Nonzero terms of A085604; T(n,k) = A085604(n,k), k = 1..A000720(n). - Reinhard Zumkeller, Nov 01 2013
For n=2, 3, 4 and 5, all terms of the n-th row are odd. Are there other such rows? - Michel Marcus, Nov 11 2018
From Gus Wiseman, May 15 2019: (Start)
Differences between successive rows are A067255, so row n is the sum of the first n row-vectors of A067255 (padded with zeros on the right so that all n row-vectors have length A000720(n)). For example, the first 10 rows of A067255 are
{}
1
0 1
2 0
0 0 1
1 1 0
0 0 0 1
3 0 0 0
0 2 0 0
1 0 1 0
with column sums (8,4,2,1), which is row 10.
(End)
For all prime p > 7, 3*p > 2*nextprime(p), so for any n > 21 there will always be a prime p dividing n! with exponent 2 and there are no further rows with all entries odd. - Charlie Neder, Jun 03 2019

Examples

			From _Gus Wiseman_, May 09 2019: (Start)
Triangle begins:
   1
   1  1
   3  1
   3  1  1
   4  2  1
   4  2  1  1
   7  2  1  1
   7  4  1  1
   8  4  2  1
   8  4  2  1  1
  10  5  2  1  1
  10  5  2  1  1  1
  11  5  2  2  1  1
  11  6  3  2  1  1
  15  6  3  2  1  1
  15  6  3  2  1  1  1
  16  8  3  2  1  1  1
  16  8  3  2  1  1  1  1
  18  8  4  2  1  1  1  1
(End)
m such that 5^m||101!: floor(log(101)/log(5)) = 2 terms. floor(101/5) = 20. floor(20/5) = 4. So m = u_1 + u_2 = 20 + 4 = 24. - _David A. Corneth_, Jun 22 2014
		

Crossrefs

Row lengths are A000720.
Row-sums are A022559.
Row-products are A135291.
Row maxima are A011371.

Programs

  • Haskell
    a115627 n k = a115627_tabf !! (n-2) !! (k-1)
    a115627_row = map a100995 . a141809_row . a000142
    a115627_tabf = map a115627_row [2..]
    -- Reinhard Zumkeller, Nov 01 2013
    
  • Maple
    A115627 := proc(n,k) local d,p; p := ithprime(k) ; n-add(d,d=convert(n,base,p)) ; %/(p-1) ; end proc: # R. J. Mathar, Oct 29 2010
  • Mathematica
    Flatten[Table[Transpose[FactorInteger[n!]][[2]], {n, 2, 20}]] (* T. D. Noe, Apr 10 2012 *)
    T[n_, k_] := Module[{p, jm}, p = Prime[k]; jm = Floor[Log[p, n]]; Sum[Floor[n/p^j], {j, 1, jm}]]; Table[Table[T[n, k], {k, 1, PrimePi[n]}], {n, 2, 20}] // Flatten (* Jean-François Alcover, Feb 23 2015 *)
  • PARI
    a(n)=my(i=2);while(n-primepi(i)>1,n-=primepi(i);i++);p=prime(n-1);sum(j=1,log(i)\log(p),i\=p) \\ David A. Corneth, Jun 21 2014

Formula

T(n,k) = Sum_{i=1..inf} floor(n/(p_k)^i). (Although stated as an infinite sum, only finitely many terms are nonzero.)
T(n,k) = Sum_{i=1..floor(log(n)/log(p_k))} floor(u_i) where u_0 = n and u_(i+1) = floor((u_i)/p_k). - David A. Corneth, Jun 22 2014

A325508 Product of primes indexed by the prime exponents of n!.

Original entry on oeis.org

1, 1, 2, 4, 10, 20, 42, 84, 204, 476, 798, 1596, 3828, 7656, 12276, 24180, 36660, 73320, 120840, 241680, 389424, 785680, 1294440, 2588880, 3848880, 7147920, 11264760, 15926040, 26057304, 52114608, 74421648, 148843296, 187159392, 340949280, 527531760, 926505360
Offset: 0

Views

Author

Gus Wiseman, May 08 2019

Keywords

Comments

The prime indices of a(n) are the signature of n!, which is row n of A115627.

Examples

			We have 7! = 2^4 * 3^2 * 5^1 * 7^1, so a(7) = prime(4)*prime(2)*prime(1)*prime(1) = 84.
The sequence of terms together with their prime indices begins:
          1: {}
          1: {}
          2: {1}
          4: {1,1}
         10: {1,3}
         20: {1,1,3}
         42: {1,2,4}
         84: {1,1,2,4}
        204: {1,1,2,7}
        476: {1,1,4,7}
        798: {1,2,4,8}
       1596: {1,1,2,4,8}
       3828: {1,1,2,5,10}
       7656: {1,1,1,2,5,10}
      12276: {1,1,2,2,5,11}
      24180: {1,1,2,3,6,11}
      36660: {1,1,2,3,6,15}
      73320: {1,1,1,2,3,6,15}
     120840: {1,1,1,2,3,8,16}
     241680: {1,1,1,1,2,3,8,16}
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@Last/@If[(n!)==1,{},FactorInteger[n!]],{n,0,30}]

Formula

a(n) = A181819(n!).
A001221(a(n)) = A071626(n).
A001222(a(n)) = A000720(n).
A056239(a(n)) = A022559(n).
A003963(a(n)) = A135291(n).
A061395(a(n)) = A011371(n).
A007814(a(n)) = A056171(n).
a(n) = A122111(A307035(n)). - Antti Karttunen, Nov 19 2019

A076934 Smallest integer of the form n/k!.

Original entry on oeis.org

1, 1, 3, 2, 5, 1, 7, 4, 9, 5, 11, 2, 13, 7, 15, 8, 17, 3, 19, 10, 21, 11, 23, 1, 25, 13, 27, 14, 29, 5, 31, 16, 33, 17, 35, 6, 37, 19, 39, 20, 41, 7, 43, 22, 45, 23, 47, 2, 49, 25, 51, 26, 53, 9, 55, 28, 57, 29, 59, 10, 61, 31, 63, 32, 65, 11, 67, 34, 69, 35, 71
Offset: 1

Views

Author

Amarnath Murthy, Oct 19 2002

Keywords

Comments

Equivalently, n divided by the largest factorial divisor of n.
Also, the smallest r such that n/r is a factorial number.
Positions of 1's are the factorial numbers A000142. Is every positive integer in this sequence? - Gus Wiseman, May 15 2019
Let m = A055874(n), the largest integer such that 1,2,...,m divides n. Then a(n*m!) = n since m+1 does not divide n, showing that every integer is part of the sequence. - Etienne Dupuis, Sep 19 2020

Crossrefs

Programs

  • Mathematica
    Table[n/Max@@Intersection[Divisors[n],Array[Factorial,n]],{n,100}] (* Gus Wiseman, May 15 2019 *)
    a[n_] := Module[{k=1}, While[Divisible[n, k!], k++]; n/(k-1)!]; Array[a, 100] (* Amiram Eldar, Dec 25 2023 *)
  • PARI
    first(n) = {my(res = [1..n]); for(i = 2, oo, k = i!; if(k <= n, for(j = 1, n\k, res[j*k] = j ) , return(res) ) ) } \\ David A. Corneth, Sep 19 2020

Formula

From Amiram Eldar, Dec 25 2023: (Start)
a(n) = n/A055881(n)!.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = BesselI(2, 2) = 0.688948... (A229020). (End)

Extensions

More terms from David A. Corneth, Sep 19 2020

A325616 Triangle read by rows where T(n,k) is the number of length-k integer partitions of n into factorial numbers.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 2, 2, 1
Offset: 0

Views

Author

Gus Wiseman, May 12 2019

Keywords

Examples

			Triangle begins:
  1
  0 1
  0 1 1
  0 0 1 1
  0 0 1 1 1
  0 0 0 1 1 1
  0 1 0 1 1 1 1
  0 0 1 0 1 1 1 1
  0 0 1 1 1 1 1 1 1
  0 0 0 1 1 1 1 1 1 1
  0 0 0 1 1 2 1 1 1 1 1
  0 0 0 0 1 1 2 1 1 1 1 1
  0 0 1 0 1 1 2 2 1 1 1 1 1
  0 0 0 1 0 1 1 2 2 1 1 1 1 1
  0 0 0 1 1 1 1 2 2 2 1 1 1 1 1
  0 0 0 0 1 1 1 1 2 2 2 1 1 1 1 1
  0 0 0 0 1 1 2 1 2 2 2 2 1 1 1 1 1
  0 0 0 0 0 1 1 2 1 2 2 2 2 1 1 1 1 1
  0 0 0 1 0 1 1 2 2 2 2 2 2 2 1 1 1 1 1
  0 0 0 0 1 0 1 1 2 2 2 2 2 2 2 1 1 1 1 1
  0 0 0 0 1 1 1 1 2 2 3 2 2 2 2 2 1 1 1 1 1
Row n = 12 counts the following partitions:
  (66)
  (6222)
  (62211)
  (222222) (621111)
  (2222211) (6111111)
  (22221111)
  (222111111)
  (2211111111)
  (21111111111)
  (111111111111)
		

Crossrefs

Row sums are A064986.
Cf. A008284.
Reciprocal factorial sum: A325618, A325619, A325620, A325622.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-y*x^(i!)),{i,1,n}],{x,0,n},{y,0,k}],{n,0,15},{k,0,n}]

Formula

T(n,k) is the coefficient of x^n * y^k in the expansion of Product_{i > 0} 1/(1 - y * x^(i!)).

A336496 Products of superfactorials (A000178).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, 512, 576, 768, 1024, 1152, 1536, 1728, 2048, 2304, 3072, 3456, 4096, 4608, 6144, 6912, 8192, 9216, 12288, 13824, 16384, 18432, 20736, 24576, 27648, 32768, 34560, 36864, 41472, 49152, 55296
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

First differs from A317804 in having 34560, which is the first term with more than two distinct prime factors.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    4: {1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   48: {1,1,1,1,2}
   64: {1,1,1,1,1,1}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  192: {1,1,1,1,1,1,2}
  256: {1,1,1,1,1,1,1,1}
  288: {1,1,1,1,1,2,2}
  384: {1,1,1,1,1,1,1,2}
  512: {1,1,1,1,1,1,1,1,1}
		

Crossrefs

A001013 is the version for factorials, with complement A093373.
A181818 is the version for superprimorials, with complement A336426.
A336497 is the complement.
A000178 lists superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A049711 is the minimum prime multiplicity in A000178.
A174605 is the maximum prime multiplicity in A000178.
A303279 counts prime factors of superfactorials.
A317829 counts factorizations of superprimorials.
A322583 counts factorizations into factorials.
A325509 counts factorizations of factorials into factorials.

Programs

  • Mathematica
    supfac[n_]:=Product[k!,{k,n}];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[1000],facsusing[Rest[Array[supfac,30]],#]!={}&]

A325709 Replace k with k! in the prime indices of n.

Original entry on oeis.org

1, 2, 3, 4, 13, 6, 89, 8, 9, 26, 659, 12, 5443, 178, 39, 16, 49033, 18, 484037, 52, 267, 1318, 5222429, 24, 169, 10886, 27, 356, 61194647, 78, 774825383, 32, 1977, 98066, 1157, 36, 10552185239, 968074, 16329, 104, 153903050137, 534, 2394322471421, 2636, 117
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

The union is A308299.

Examples

			The sequence of terms together with their prime indices begins:
       1: {}
       2: {1}
       3: {2}
       4: {1,1}
      13: {6}
       6: {1,2}
      89: {24}
       8: {1,1,1}
       9: {2,2}
      26: {1,6}
     659: {120}
      12: {1,1,2}
    5443: {720}
     178: {1,24}
      39: {2,6}
      16: {1,1,1,1}
   49033: {5040}
      18: {1,2,2}
  484037: {40320}
      52: {1,1,6}.
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@(If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]!),{n,20}]
  • PARI
    A325709(n) = { my(f=factor(n)); prod(i=1,#f~,prime(primepi(f[i, 1])!)^f[i, 2]); }; \\ Antti Karttunen, Nov 17 2019
    
  • Python
    from math import prod, factorial
    from sympy import prime, primepi, factorint
    def A325709(n): return prod(prime(factorial(primepi(p)))**e for p, e in factorint(n).items()) # Chai Wah Wu, Dec 26 2022

Formula

Completely multiplicative with a(prime(n)) = prime(n!).
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(k!)) = 3.292606708493... . - Amiram Eldar, Dec 09 2022

Extensions

Keyword:mult added by Antti Karttunen, Nov 17 2019

A336497 Numbers that cannot be written as a product of superfactorials A000178.

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

First differs from A336426 in having 360.

Examples

			The sequence of terms together with their prime indices begins:
     3: {2}        22: {1,5}        39: {2,6}
     5: {3}        23: {9}          40: {1,1,1,3}
     6: {1,2}      25: {3,3}        41: {13}
     7: {4}        26: {1,6}        42: {1,2,4}
     9: {2,2}      27: {2,2,2}      43: {14}
    10: {1,3}      28: {1,1,4}      44: {1,1,5}
    11: {5}        29: {10}         45: {2,2,3}
    13: {6}        30: {1,2,3}      46: {1,9}
    14: {1,4}      31: {11}         47: {15}
    15: {2,3}      33: {2,5}        49: {4,4}
    17: {7}        34: {1,7}        50: {1,3,3}
    18: {1,2,2}    35: {3,4}        51: {2,7}
    19: {8}        36: {1,1,2,2}    52: {1,1,6}
    20: {1,1,3}    37: {12}         53: {16}
    21: {2,4}      38: {1,8}        54: {1,2,2,2}
		

Crossrefs

A093373 is the version for factorials, with complement A001013.
A336426 is the version for superprimorials, with complement A181818.
A336496 is the complement.
A000178 lists superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A049711 is the minimum prime multiplicity in A000178(n).
A174605 is the maximum prime multiplicity in A000178(n).
A303279 counts prime factors (with multiplicity) of superprimorials.
A317829 counts factorizations of superprimorials.
A322583 counts factorizations into factorials.
A325509 counts factorizations of factorials into factorials.

Programs

  • Mathematica
    supfac[n_]:=Product[k!,{k,n}];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[100],facsusing[Rest[Array[supfac,30]],#]=={}&]

A325510 Number of non-isomorphic multiset partitions of the multiset of prime indices of n!.

Original entry on oeis.org

1, 1, 1, 2, 7, 16, 98, 269, 1397, 7582, 70520, 259906, 1677259, 5229112, 44726100, 666355170, 4917007185, 18459879921
Offset: 0

Views

Author

Gus Wiseman, May 08 2019

Keywords

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 16 multiset partitions:
  {{1}}  {{12}}    {{1222}}        {{12333}}
         {{1}{2}}  {{1}{222}}      {{1}{2333}}
                   {{12}{22}}      {{12}{333}}
                   {{2}{122}}      {{13}{233}}
                   {{1}{2}{22}}    {{3}{1233}}
                   {{2}{2}{12}}    {{33}{123}}
                   {{1}{2}{2}{2}}  {{1}{2}{333}}
                                   {{1}{23}{33}}
                                   {{1}{3}{233}}
                                   {{3}{12}{33}}
                                   {{3}{13}{23}}
                                   {{3}{3}{123}}
                                   {{1}{1}{1}{23}}
                                   {{1}{2}{3}{33}}
                                   {{1}{3}{3}{23}}
                                   {{1}{2}{3}{3}{3}}
		

Crossrefs

Programs

  • PARI
    \\ Requires C(sig) from A318285.
    a(n)={if(n<2, 1, my(f=factor(n!)[,2], sig=vector(vecmax(f))); for(i=1, #f, sig[f[i]]++); C(sig))} \\ Andrew Howroyd, Jan 17 2023

Formula

a(n) = A317791(n!).
a(n) = A318285(A181819(n!)) = A318285(A325508(n)). - Andrew Howroyd, Jan 17 2023

Extensions

a(9)-a(17) from Andrew Howroyd, Jan 17 2023

A325511 Numbers whose prime signature is that of a factorial number.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 29, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 97, 101, 103, 104, 106
Offset: 1

Views

Author

Gus Wiseman, May 08 2019

Keywords

Comments

A181819(a(n)) belongs to A325508.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   6: {1,2}
   7: {4}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  24: {1,1,1,2}
  26: {1,6}
  29: {10}
  31: {11}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[30],MemberQ[Table[Sort[Last/@FactorInteger[k!]],{k,#}],Sort[Last/@FactorInteger[#]]]&]
Showing 1-9 of 9 results.