cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A022559 Sum of exponents in prime-power factorization of n!.

Original entry on oeis.org

0, 0, 1, 2, 4, 5, 7, 8, 11, 13, 15, 16, 19, 20, 22, 24, 28, 29, 32, 33, 36, 38, 40, 41, 45, 47, 49, 52, 55, 56, 59, 60, 65, 67, 69, 71, 75, 76, 78, 80, 84, 85, 88, 89, 92, 95, 97, 98, 103, 105, 108, 110, 113, 114, 118, 120, 124, 126, 128, 129, 133, 134, 136, 139
Offset: 0

Views

Author

Karen E. Wandel (kw29(AT)evansville.edu)

Keywords

Comments

Partial sums of Omega(n) (A001222). - N. J. A. Sloane, Feb 06 2022

Examples

			For n=5, 5! = 120 = 2^3*3^1*5^1 so a(5) = 3+1+1 = 5. - _N. J. A. Sloane_, May 26 2018
		

Crossrefs

Programs

  • Haskell
    a022559 n = a022559_list !! n
    a022559_list = scanl (+) 0 $ map a001222 [1..]
    -- Reinhard Zumkeller, Feb 16 2012
    
  • Maple
    with(numtheory):with(combinat):a:=proc(n) if n=0 then 0 else bigomega(numbperm(n)) fi end: seq(a(n), n=0..63); # Zerinvary Lajos, Apr 11 2008
    # Alternative:
    ListTools:-PartialSums(map(numtheory:-bigomega, [$0..200])); # Robert Israel, Dec 21 2018
  • Mathematica
    Array[Plus@@Last/@FactorInteger[ #! ] &, 5!, 0] (* Vladimir Joseph Stephan Orlovsky, Nov 10 2009 *)
    f[n_] := If[n <= 1, 0, Total[FactorInteger[n]][[2]]]; Accumulate[Array[f, 100, 0]] (* T. D. Noe, Apr 11 2011 *)
    Table[PrimeOmega[n!], {n, 0, 70}] (* Jean-François Alcover, Jun 08 2013 *)
    Join[{0}, Accumulate[PrimeOmega[Range[70]]]] (* Harvey P. Dale, Jul 23 2013 *)
  • PARI
    a(n)=bigomega(n!)
    
  • PARI
    first(n)={my(k=0); vector(n, i, k+=bigomega(i))}
    
  • PARI
    a(n) = sum(k=1, primepi(n), (n - sumdigits(n, prime(k))) / (prime(k)-1)); \\ Daniel Suteu, Apr 18 2018
    
  • PARI
    a(n) = my(res = 0); forprime(p = 2, n, cn = n; while(cn > 0, res += (cn \= p))); res \\ David A. Corneth, Apr 27 2018
    
  • Python
    from sympy import factorint as pf
    def aupton(nn):
        alst = [0]
        for n in range(1, nn+1): alst.append(alst[-1] + sum(pf(n).values()))
        return alst
    print(aupton(63)) # Michael S. Branicky, Aug 01 2021

Formula

a(n) = a(n-1) + A001222(n).
A027746(a(A000040(n))+1) = A000040(n). A082288(a(n)+1) = n.
A001221(n!) = omega(n!) = pi(n) = A000720(n).
a(n) = Sum_{i = 1..n} A001222(i). - Jonathan Vos Post, Feb 10 2010
a(n) = n log log n + B_2 * n + o(n), with B_2 = A083342. - Charles R Greathouse IV, Jan 11 2012
a(n) = A210241(n) - n for n > 0. - Reinhard Zumkeller, Mar 23 2012
G.f.: (1/(1 - x))*Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k)). - Ilya Gutkovskiy, Mar 15 2017
a(n) = Sum_{k=1..floor(sqrt(n))} k * (A025528(floor(n/k)) - A025528(floor(n/(k+1)))) + Sum_{k=1..floor(n/(floor(sqrt(n))+1))} floor(n/k) * A069513(k). - Daniel Suteu, Dec 21 2018
a(n) = Sum_{prime p<=n} Sum_{k=1..floor(log_p(n))} floor(n/p^k). - Ridouane Oudra, Nov 04 2022
a(n) = Sum_{k=1..n} A069513(k)*floor(n/k). - Ridouane Oudra, Oct 04 2024

Extensions

Typo corrected by Daniel Forgues, Nov 16 2009

A071626 Number of distinct exponents in the prime factorization of n!.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Comments

Erdős proved that there exist two constants c1, c2 > 0 such that c1 (n / log(n))^(1/2) < a(n) < c2 (n / log(n))^(1/2). - Carlo Sanna, May 28 2019
R. Heyman and R. Miraj proved that the cardinality of the set { floor(n/p) : p <= n, p prime } is same as the number of distinct exponents in the prime factorization of n!. - Md Rahil Miraj, Apr 05 2024

Examples

			n=7: 7! = 5040 = 2*2*2*2*3*3*5*7; three different exponents arise: 4, 2 and 1; a(7)=3.
n=7: { floor(7/p) : p <= 7, p prime } = {3,2,1}. So, its cardinality is 3. - _Md Rahil Miraj_, Apr 05 2024
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] Table[Length[Union[ep[w! ]]], {w, 1, 100}]
    Table[Length[Union[Last/@If[n==1,{},FactorInteger[n!]]]],{n,30}] (* Gus Wiseman, May 15 2019 *)
  • PARI
    a(n) = #Set(factor(n!)[, 2]); \\ Michel Marcus, Sep 05 2017

Formula

a(n) = A071625(n!) = A323023(n!,3). - Gus Wiseman, May 15 2019

A325617 Multinomial coefficient of the prime signature of n!.

Original entry on oeis.org

1, 1, 1, 2, 4, 20, 105, 840, 3960, 51480, 675675, 10810800, 139675536, 2793510720, 58663725120, 1799020903680, 26985313555200, 782574093100800, 25992639520848000, 857757104187984000, 30021498646579440000, 1563341744336692320000, 64179292662243158400000
Offset: 0

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Number of permutations of the multiset of prime factors of n!.

Examples

			The a(5) = 20 permutations of {2,2,2,3,5}:
  (22235)  (32225)  (52223)
  (22253)  (32252)  (52232)
  (22325)  (32522)  (52322)
  (22352)  (35222)  (53222)
  (22523)
  (22532)
  (23225)
  (23252)
  (23522)
  (25223)
  (25232)
  (25322)
		

Crossrefs

Programs

  • Mathematica
    Table[Multinomial@@Last/@FactorInteger[n!],{n,0,15}]

Formula

a(n) = A318762(A181819(n!)).

A240537 Let a(n) be the least k such that in the prime power factorization of k! the exponents of primes p_1, ...,p_n are even, while the exponent of p_(n+1) is odd.

Original entry on oeis.org

12, 6, 10, 20, 48, 54, 338, 875, 2849, 1440, 3841, 816, 59583, 101755, 40465, 37514, 409026, 268836, 591360, 855368, 5493420, 9627251, 28953290, 14557116, 7336812, 1475128, 127632241, 531296823, 3028478192, 2435868325, 1092228841, 32377733790, 472077979
Offset: 1

Views

Author

Keywords

Comments

The sequence is connected with a 1980-Erdős-Graham conjecture that, for every N, there exists an n such that in prime power factorization of n! at least N first exponents are even. In 1997, this conjecture was proved by D. Berend. A generalization was given by Y.-G. Chen (2003).

References

  • P. Erdős, P. L. Graham, Old and new problems and results in combinatorial number theory, L'Enseignement Mathematique, Imprimerie Kunding, Geneva, 1980.

Crossrefs

Programs

  • PARI
    nbe(n) = {my(f = factor(n!)[, 2], nb = 0); for (i=1, #f, if (!(f[i] % 2), nb++, break);); nb;}
    a(n) = {my(i = 1); while (nbe(i) != n, i++); i;} \\ Michel Marcus, Nov 07 2018

Extensions

a(21)-a(30) from Giovanni Resta, Apr 07 2014
a(31)-a(33) from Hiroaki Yamanouchi, Sep 05 2014

A325508 Product of primes indexed by the prime exponents of n!.

Original entry on oeis.org

1, 1, 2, 4, 10, 20, 42, 84, 204, 476, 798, 1596, 3828, 7656, 12276, 24180, 36660, 73320, 120840, 241680, 389424, 785680, 1294440, 2588880, 3848880, 7147920, 11264760, 15926040, 26057304, 52114608, 74421648, 148843296, 187159392, 340949280, 527531760, 926505360
Offset: 0

Views

Author

Gus Wiseman, May 08 2019

Keywords

Comments

The prime indices of a(n) are the signature of n!, which is row n of A115627.

Examples

			We have 7! = 2^4 * 3^2 * 5^1 * 7^1, so a(7) = prime(4)*prime(2)*prime(1)*prime(1) = 84.
The sequence of terms together with their prime indices begins:
          1: {}
          1: {}
          2: {1}
          4: {1,1}
         10: {1,3}
         20: {1,1,3}
         42: {1,2,4}
         84: {1,1,2,4}
        204: {1,1,2,7}
        476: {1,1,4,7}
        798: {1,2,4,8}
       1596: {1,1,2,4,8}
       3828: {1,1,2,5,10}
       7656: {1,1,1,2,5,10}
      12276: {1,1,2,2,5,11}
      24180: {1,1,2,3,6,11}
      36660: {1,1,2,3,6,15}
      73320: {1,1,1,2,3,6,15}
     120840: {1,1,1,2,3,8,16}
     241680: {1,1,1,1,2,3,8,16}
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@Last/@If[(n!)==1,{},FactorInteger[n!]],{n,0,30}]

Formula

a(n) = A181819(n!).
A001221(a(n)) = A071626(n).
A001222(a(n)) = A000720(n).
A056239(a(n)) = A022559(n).
A003963(a(n)) = A135291(n).
A061395(a(n)) = A011371(n).
A007814(a(n)) = A056171(n).
a(n) = A122111(A307035(n)). - Antti Karttunen, Nov 19 2019

A076934 Smallest integer of the form n/k!.

Original entry on oeis.org

1, 1, 3, 2, 5, 1, 7, 4, 9, 5, 11, 2, 13, 7, 15, 8, 17, 3, 19, 10, 21, 11, 23, 1, 25, 13, 27, 14, 29, 5, 31, 16, 33, 17, 35, 6, 37, 19, 39, 20, 41, 7, 43, 22, 45, 23, 47, 2, 49, 25, 51, 26, 53, 9, 55, 28, 57, 29, 59, 10, 61, 31, 63, 32, 65, 11, 67, 34, 69, 35, 71
Offset: 1

Views

Author

Amarnath Murthy, Oct 19 2002

Keywords

Comments

Equivalently, n divided by the largest factorial divisor of n.
Also, the smallest r such that n/r is a factorial number.
Positions of 1's are the factorial numbers A000142. Is every positive integer in this sequence? - Gus Wiseman, May 15 2019
Let m = A055874(n), the largest integer such that 1,2,...,m divides n. Then a(n*m!) = n since m+1 does not divide n, showing that every integer is part of the sequence. - Etienne Dupuis, Sep 19 2020

Crossrefs

Programs

  • Mathematica
    Table[n/Max@@Intersection[Divisors[n],Array[Factorial,n]],{n,100}] (* Gus Wiseman, May 15 2019 *)
    a[n_] := Module[{k=1}, While[Divisible[n, k!], k++]; n/(k-1)!]; Array[a, 100] (* Amiram Eldar, Dec 25 2023 *)
  • PARI
    first(n) = {my(res = [1..n]); for(i = 2, oo, k = i!; if(k <= n, for(j = 1, n\k, res[j*k] = j ) , return(res) ) ) } \\ David A. Corneth, Sep 19 2020

Formula

From Amiram Eldar, Dec 25 2023: (Start)
a(n) = n/A055881(n)!.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = BesselI(2, 2) = 0.688948... (A229020). (End)

Extensions

More terms from David A. Corneth, Sep 19 2020

A090622 Square array read by antidiagonals of highest power of k dividing n! (with n,k>1).

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 0, 1, 3, 0, 0, 1, 1, 4, 0, 1, 0, 1, 2, 4, 0, 0, 1, 1, 2, 2, 7, 0, 0, 0, 1, 1, 2, 2, 7, 0, 0, 1, 0, 2, 1, 3, 4, 8, 0, 0, 0, 1, 0, 2, 1, 3, 4, 8, 0, 0, 0, 0, 1, 1, 2, 1, 4, 4, 10, 0, 0, 0, 1, 1, 1, 1, 4, 2, 4, 5, 10, 0, 0, 1, 0, 1, 1, 2, 1, 4, 2, 5, 5, 11, 0, 0, 0, 1, 0, 1, 1, 2, 1, 4, 2, 5, 5, 11
Offset: 2

Views

Author

Henry Bottomley, Dec 06 2003

Keywords

Examples

			Square array starts:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 1, 0, 0, ...
3, 1, 1, 0, 1, 0, 1, ...
3, 1, 1, 1, 1, 0, 1, ...
4, 2, 2, 1, 2, 0, 1, ...
4, 2, 2, 1, 2, 1, 1, ...
7, 2, 3, 1, 2, 1, 2, ...
		

Crossrefs

Programs

  • Maple
    f:= proc(n, p) local c, k; c, k:= 0, p;
           while n>=k do c:= c+iquo(n, k); k:= k*p od; c
        end:
    T:= (n, k)-> min(seq(iquo(f(n, i[1]), i[2]), i=ifactors(k)[2])):
    seq(seq(T(n, 2+d-n), n=2..d), d=2..20);  # Alois P. Heinz, Oct 04 2012
  • Mathematica
    f[n_, p_] := Module[{c = 0, k = p}, While[n >= k , c = c + Quotient[n, k]; k = k*p ]; c ]; t[n_, k_] := Min[ Table[ Quotient[f[n, i[[1]]], i[[2]]], {i, FactorInteger[k]}]]; Table[ Table[t[n, 2 + d - n], {n, 2, d}], {d, 2, 20}] // Flatten (* Jean-François Alcover, Oct 03 2013, translated from Alois P. Heinz's Maple program *)

Formula

For k=p prime: T(n,p) = [n/p] + [n/p^2] + [n/p^3] + .... For k = p^m a prime power: T(n,p^m) = [T(n,p)/m]. For k = b*c with b and c coprime: T(n,a*b) = min(T(n,a), T(n,b)). T(n,k) is close to, but below, n/A090624(k).

A325618 Numbers m such that there exists an integer partition of m whose reciprocal factorial sum is 1.

Original entry on oeis.org

1, 4, 11, 18, 24, 31, 37, 44, 45, 50, 52, 57, 58, 65, 66, 70, 71, 73, 76, 78, 79, 83, 86, 87, 89, 91, 92, 94, 96, 97, 99, 100, 102, 104, 107, 108, 109, 110, 112, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.
Conjecture: 137 is the greatest integer not in this sequence. - Charlie Neder, May 14 2019

Examples

			The sequence of terms together with an integer partition of each whose reciprocal factorial sum is 1 begins:
   1: (1)
   4: (2,2)
  11: (3,3,3,2)
  18: (3,3,3,3,3,3)
  24: (4,4,4,4,3,3,2)
  31: (4,4,4,4,3,3,3,3,3)
  37: (4,4,4,4,4,4,4,4,3,2)
  44: (4,4,4,4,4,4,4,4,3,3,3,3)
  45: (5,5,5,5,5,4,4,4,3,3,2)
  50: (4,4,4,4,4,4,4,4,4,4,4,4,2)
		

Crossrefs

Extensions

a(11)-a(55) from Charlie Neder, May 14 2019

A060175 Square array A(n,k) = exponent of the largest power of k-th prime which divides n, read by falling antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Henry Bottomley, Mar 14 2001

Keywords

Examples

			a(12,1) = 2 since 4 = 2^2 = p_1^2 divides 12 but 8 = 2^3 does not.
a(12,2) = 1 since 3 = p_2 divides 12 but 9 = 3^2 does not.
See also examples in A249344, which is transpose of this array.
The top-left corner of the array:
n\k | 1  2  3  4  5  6  7  8
----+------------------------
1   | 0, 0, 0, 0, 0, 0, 0, 0,
2   | 1, 0, 0, 0, 0, 0, 0, 0,
3   | 0, 1, 0, 0, 0, 0, 0, 0,
4   | 2, 0, 0, 0, 0, 0, 0, 0,
5   | 0, 0, 1, 0, 0, 0, 0, 0,
6   | 1, 1, 0, 0, 0, 0, 0, 0,
7   | 0, 0, 0, 1, 0, 0, 0, 0,
8   | 3, 0, 0, 0, 0, 0, 0, 0,
9   | 0, 2, 0, 0, 0, 0, 0, 0,
10  | 1, 0, 1, 0, 0, 0, 0, 0,
11  | 0, 0, 0, 0, 1, 0, 0, 0,
12  | 2, 1, 0, 0, 0, 0, 0, 0,
...
		

Crossrefs

Transpose: A249344.
Column 1: A007814.
Column 2: A007949.
Column 3: A112765.
Column 4: A214411.
Row sums: A001222.

Programs

  • Mathematica
    T[n_, k_] := IntegerExponent[n, Prime[k]];
    Table[T[n-k+1, k], {n, 1, 15}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 18 2019 *)
  • PARI
    a(n, k) = valuation(n, prime(k)); \\ Michel Marcus, Jun 24 2017
  • Python
    from sympy import prime
    def a(n, k):
        p=prime(n)
        i=z=0
        while p**i<=k:
            if k%(p**i)==0: z=i
            i+=1
        return z
    for n in range(1, 10): print([a(n - k + 1, k) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 24 2017
    
  • Scheme
    (define (A060175 n) (A249344bi (A004736 n) (A002260 n)))
    (define (A249344bi row col) (let ((p (A000040 row))) (let loop ((n col) (i 0)) (cond ((not (zero? (modulo n p))) i) (else (loop (/ n p) (+ i 1)))))))
    ;; Antti Karttunen, Oct 28 2014
    

Formula

A(n, k) = log(A060176(n, k))/log(A000040(k)) = k-th digit from right of A054841(n).

Extensions

Erroneous example corrected and more terms computed by Antti Karttunen, Oct 28 2014
Name clarified by Antti Karttunen, Jan 16 2025

A325509 Number of factorizations of n! into factorial numbers > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 08 2019

Keywords

Examples

			n = 10:
  (6*120*5040)
  (720*5040)
  (3628800)
n = 16:
  (2*2*2*2*1307674368000)
  (2*120*87178291200)
  (20922789888000)
n = 24:
  (2*2*6*25852016738884976640000)
  (24*25852016738884976640000)
  (620448401733239439360000)
		

Crossrefs

Programs

  • Mathematica
    facs[n_,u_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d,u],Min@@#>=d&]],{d,Intersection[u,Rest[Divisors[n]]]}]];
    Table[Length[facs[n!,Rest[Array[#!&,n]]]],{n,15}]

Formula

a(n) = 1 + A034876(n).

Extensions

More terms from Alois P. Heinz, May 08 2019
Showing 1-10 of 30 results. Next