cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A325616 Triangle read by rows where T(n,k) is the number of length-k integer partitions of n into factorial numbers.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 2, 2, 1
Offset: 0

Views

Author

Gus Wiseman, May 12 2019

Keywords

Examples

			Triangle begins:
  1
  0 1
  0 1 1
  0 0 1 1
  0 0 1 1 1
  0 0 0 1 1 1
  0 1 0 1 1 1 1
  0 0 1 0 1 1 1 1
  0 0 1 1 1 1 1 1 1
  0 0 0 1 1 1 1 1 1 1
  0 0 0 1 1 2 1 1 1 1 1
  0 0 0 0 1 1 2 1 1 1 1 1
  0 0 1 0 1 1 2 2 1 1 1 1 1
  0 0 0 1 0 1 1 2 2 1 1 1 1 1
  0 0 0 1 1 1 1 2 2 2 1 1 1 1 1
  0 0 0 0 1 1 1 1 2 2 2 1 1 1 1 1
  0 0 0 0 1 1 2 1 2 2 2 2 1 1 1 1 1
  0 0 0 0 0 1 1 2 1 2 2 2 2 1 1 1 1 1
  0 0 0 1 0 1 1 2 2 2 2 2 2 2 1 1 1 1 1
  0 0 0 0 1 0 1 1 2 2 2 2 2 2 2 1 1 1 1 1
  0 0 0 0 1 1 1 1 2 2 3 2 2 2 2 2 1 1 1 1 1
Row n = 12 counts the following partitions:
  (66)
  (6222)
  (62211)
  (222222) (621111)
  (2222211) (6111111)
  (22221111)
  (222111111)
  (2211111111)
  (21111111111)
  (111111111111)
		

Crossrefs

Row sums are A064986.
Cf. A008284.
Reciprocal factorial sum: A325618, A325619, A325620, A325622.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-y*x^(i!)),{i,1,n}],{x,0,n},{y,0,k}],{n,0,15},{k,0,n}]

Formula

T(n,k) is the coefficient of x^n * y^k in the expansion of Product_{i > 0} 1/(1 - y * x^(i!)).

A325619 Heinz numbers of integer partitions whose reciprocal factorial sum is 1.

Original entry on oeis.org

2, 9, 375, 15625
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      9: {2,2}
    375: {2,3,3,3}
  15625: {3,3,3,3,3,3}
		

Crossrefs

Reciprocal factorial sum: A002966, A051908, A316855, A325618, A325624.

Programs

  • Mathematica
    Select[Range[100000],Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]==1&]

Formula

Contains prime(n)^(n!) for all n > 0, including 191581231380566414401 for n = 4.

A325620 Number of integer partitions of n whose reciprocal factorial sum is an integer.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 14, 14, 15, 16, 18, 19, 20, 22, 24, 25, 26, 28, 31, 33, 34, 36, 39, 41, 43, 45, 49, 52, 54, 57, 61, 65, 68, 71, 76, 80, 84, 88, 93, 98, 103, 107, 113
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The initial terms count the following partitions:
  1: (1)
  2: (1,1)
  3: (1,1,1)
  4: (2,2)
  4: (1,1,1,1)
  5: (2,2,1)
  5: (1,1,1,1,1)
  6: (2,2,1,1)
  6: (1,1,1,1,1,1)
  7: (2,2,1,1,1)
  7: (1,1,1,1,1,1,1)
  8: (2,2,2,2)
  8: (2,2,1,1,1,1)
  8: (1,1,1,1,1,1,1,1)
  9: (2,2,2,2,1)
  9: (2,2,1,1,1,1,1)
  9: (1,1,1,1,1,1,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Total[1/(#!)]]&]],{n,30}]

A325622 Number of integer partitions of n whose reciprocal factorial sum is the reciprocal of an integer.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 5, 4, 4, 3, 3, 4, 6, 3, 4, 5, 5, 5, 6, 3, 7, 6, 5, 6, 6, 6, 5, 6, 8, 5, 7, 5, 4, 8, 7, 7, 7, 7, 9, 9, 9, 10, 12, 6, 12, 8, 10, 7, 14, 10, 8, 11, 11, 12, 11, 10, 10, 12, 14, 11, 10, 9, 10, 12, 10, 15, 14, 11, 10
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The initial terms count the following partitions:
   1: (1)
   2: (2)
   3: (3)
   4: (4)
   4: (2,2)
   5: (5)
   6: (6)
   6: (3,3)
   7: (7)
   8: (8)
   8: (4,4)
   9: (9)
   9: (5,4)
   9: (3,3,3)
  10: (10)
  10: (5,5)
  11: (11)
  11: (4,4,3)
  11: (3,3,3,2)
  12: (12)
  12: (6,6)
  12: (4,4,4)
		

Crossrefs

Reciprocal factorial sum: A002966, A316854, A316857, A325618, A325620, A325623.

Programs

  • Maple
    f:= proc(n) nops(select(proc(t) local i; (1/add(1/i!,i=t))::integer end proc, combinat:-partition(n))) end proc:
    map(f, [$1..70]); # Robert Israel, May 09 2024
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[1/Total[1/(#!)]]&]],{n,30}]
  • PARI
    a(n) = my(c=0); forpart(v=n, if(numerator(sum(i=1, #v, 1/v[i]!))==1, c++)); c; \\ Jinyuan Wang, Feb 25 2025

Extensions

a(61)-a(70) from Robert Israel, May 09 2024
a(71)-a(80) from Jinyuan Wang, Feb 25 2025

A325624 a(n) = prime(n)^(n!).

Original entry on oeis.org

2, 9, 15625, 191581231380566414401, 92709068817830061978520606494193845859707401497097037749844778027824097442147966967457359038488841338006006032592594389655201
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

A subsequence of A325619 (numbers whose prime indices have reciprocal factorial sum equal to 1).

Crossrefs

Reciprocal factorial sum: A002966, A051908, A316855, A325618, A325619.

Programs

  • Mathematica
    Table[Prime[n]^n!,{n,5}]

A325704 If n = prime(i_1)^j_1 * ... * prime(i_k)^j_k, then a(n) is the numerator of the reciprocal factorial sum j_1/i_1! + ... + j_k/i_k!.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 1, 7, 1, 5, 1, 25, 2, 4, 1, 2, 1, 13, 13, 121, 1, 7, 1, 721, 3, 49, 1, 5, 1, 5, 61, 5041, 5, 3, 1, 40321, 361, 19, 1, 37, 1, 241, 7, 362881, 1, 9, 1, 4, 2521, 1441, 1, 5, 7, 73, 20161, 3628801, 1, 8, 1, 39916801, 25, 6, 121, 181, 1
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

Alternatively, if n = prime(i_1) * ... * prime(i_k), then a(n) is the numerator of 1/i_1! + ... + 1/i_k!.

Crossrefs

Programs

  • Mathematica
    Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>k/PrimePi[p]!]],{n,100}]//Numerator
  • PARI
    A325704(n) = { my(f=factor(n)); numerator(sum(i=1,#f~,f[i, 2]/(primepi(f[i, 1])!))); }; \\ Antti Karttunen, Nov 17 2019

Formula

a(n) = A318573(A325709(n)).

A325709 Replace k with k! in the prime indices of n.

Original entry on oeis.org

1, 2, 3, 4, 13, 6, 89, 8, 9, 26, 659, 12, 5443, 178, 39, 16, 49033, 18, 484037, 52, 267, 1318, 5222429, 24, 169, 10886, 27, 356, 61194647, 78, 774825383, 32, 1977, 98066, 1157, 36, 10552185239, 968074, 16329, 104, 153903050137, 534, 2394322471421, 2636, 117
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

The union is A308299.

Examples

			The sequence of terms together with their prime indices begins:
       1: {}
       2: {1}
       3: {2}
       4: {1,1}
      13: {6}
       6: {1,2}
      89: {24}
       8: {1,1,1}
       9: {2,2}
      26: {1,6}
     659: {120}
      12: {1,1,2}
    5443: {720}
     178: {1,24}
      39: {2,6}
      16: {1,1,1,1}
   49033: {5040}
      18: {1,2,2}
  484037: {40320}
      52: {1,1,6}.
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@(If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]!),{n,20}]
  • PARI
    A325709(n) = { my(f=factor(n)); prod(i=1,#f~,prime(primepi(f[i, 1])!)^f[i, 2]); }; \\ Antti Karttunen, Nov 17 2019
    
  • Python
    from math import prod, factorial
    from sympy import prime, primepi, factorint
    def A325709(n): return prod(prime(factorial(primepi(p)))**e for p, e in factorint(n).items()) # Chai Wah Wu, Dec 26 2022

Formula

Completely multiplicative with a(prime(n)) = prime(n!).
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(k!)) = 3.292606708493... . - Amiram Eldar, Dec 09 2022

Extensions

Keyword:mult added by Antti Karttunen, Nov 17 2019

A308299 Numbers whose prime indices are factorial numbers.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18, 24, 26, 27, 32, 36, 39, 48, 52, 54, 64, 72, 78, 81, 89, 96, 104, 108, 117, 128, 144, 156, 162, 169, 178, 192, 208, 216, 234, 243, 256, 267, 288, 312, 324, 338, 351, 356, 384, 416, 432, 468, 486, 507, 512, 534, 576, 624, 648
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions using factorial numbers. The enumeration of these partitions by sum is given by A064986.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
    9: {2,2}
   12: {1,1,2}
   13: {6}
   16: {1,1,1,1}
   18: {1,2,2}
   24: {1,1,1,2}
   26: {1,6}
   27: {2,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   39: {2,6}
   48: {1,1,1,1,2}
   52: {1,1,6}
   54: {1,2,2,2}
		

Crossrefs

Programs

  • Mathematica
    nn=5;
    facts=Array[Factorial,nn];
    Select[Range[Prime[Max@@facts]],SubsetQ[facts,PrimePi/@First/@FactorInteger[#]]&]

Formula

Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(k!)) = 3.292606708493... . - Amiram Eldar, Dec 03 2022

A325703 If n = prime(i_1)^j_1 * ... * prime(i_k)^j_k, then a(n) is the denominator of the reciprocal factorial sum j_1/i_1! + ... + j_k/i_k!.

Original entry on oeis.org

1, 1, 2, 1, 6, 2, 24, 1, 1, 6, 120, 2, 720, 24, 3, 1, 5040, 1, 40320, 6, 24, 120, 362880, 2, 3, 720, 2, 24, 3628800, 3, 39916800, 1, 120, 5040, 24, 1, 479001600, 40320, 720, 6, 6227020800, 24, 87178291200, 120, 6, 362880, 1307674368000, 2, 12, 3, 5040, 720
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

Alternatively, if n = prime(i_1) * ... * prime(i_k), then a(n) is the denominator of 1/i_1! + ... + 1/i_k!.

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,t;
        F:= ifactors(n)[2];
        denom(add(t[2]/numtheory:-pi(t[1])!,t=F))
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 13 2024
  • Mathematica
    Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>k/PrimePi[p]!]],{n,100}]//Denominator

Formula

a(n) = A318574(A325709(n)).

A325701 Nonprime Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.

Original entry on oeis.org

1, 9, 25, 49, 77, 121, 125, 169, 221, 245, 289, 323, 343, 361, 375, 437, 529, 841, 899, 961, 1331, 1369, 1517, 1681, 1763, 1849, 1859, 2021, 2197, 2209, 2401, 2773, 2809, 2873, 3127, 3481, 3721, 3757, 4087, 4489, 4757, 4913, 5041, 5183, 5329, 5929, 6137, 6241
Offset: 1

Views

Author

Gus Wiseman, May 17 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     9: {2,2}
    25: {3,3}
    49: {4,4}
    77: {4,5}
   121: {5,5}
   125: {3,3,3}
   169: {6,6}
   221: {6,7}
   245: {3,4,4}
   289: {7,7}
   323: {7,8}
   343: {4,4,4}
   361: {8,8}
   375: {2,3,3,3}
   437: {8,9}
   529: {9,9}
   841: {10,10}
   899: {10,11}
   961: {11,11}
For example, the sequence contains 245 because the prime indices of 245 are {3,4,4}, with reciprocal sum 1/6 + 1/24 + 1/24 = 1/4.
		

Crossrefs

Reciprocal factorial sum: A002966, A316854, A316857, A325618, A325620, A325622, A325623.

Programs

  • Mathematica
    Select[Range[1000],!PrimeQ[#]&&IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]
Showing 1-10 of 10 results.