cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A325709 Replace k with k! in the prime indices of n.

Original entry on oeis.org

1, 2, 3, 4, 13, 6, 89, 8, 9, 26, 659, 12, 5443, 178, 39, 16, 49033, 18, 484037, 52, 267, 1318, 5222429, 24, 169, 10886, 27, 356, 61194647, 78, 774825383, 32, 1977, 98066, 1157, 36, 10552185239, 968074, 16329, 104, 153903050137, 534, 2394322471421, 2636, 117
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

The union is A308299.

Examples

			The sequence of terms together with their prime indices begins:
       1: {}
       2: {1}
       3: {2}
       4: {1,1}
      13: {6}
       6: {1,2}
      89: {24}
       8: {1,1,1}
       9: {2,2}
      26: {1,6}
     659: {120}
      12: {1,1,2}
    5443: {720}
     178: {1,24}
      39: {2,6}
      16: {1,1,1,1}
   49033: {5040}
      18: {1,2,2}
  484037: {40320}
      52: {1,1,6}.
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@(If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]!),{n,20}]
  • PARI
    A325709(n) = { my(f=factor(n)); prod(i=1,#f~,prime(primepi(f[i, 1])!)^f[i, 2]); }; \\ Antti Karttunen, Nov 17 2019
    
  • Python
    from math import prod, factorial
    from sympy import prime, primepi, factorint
    def A325709(n): return prod(prime(factorial(primepi(p)))**e for p, e in factorint(n).items()) # Chai Wah Wu, Dec 26 2022

Formula

Completely multiplicative with a(prime(n)) = prime(n!).
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(k!)) = 3.292606708493... . - Amiram Eldar, Dec 09 2022

Extensions

Keyword:mult added by Antti Karttunen, Nov 17 2019
Showing 1-1 of 1 results.