cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Carlo Sanna

Carlo Sanna's wiki page.

Carlo Sanna has authored 1 sequences.

A265643 a(n) = +-1 == ((p - 1)/2)! (mod p), where p is the n-th prime number == 3 (mod 4).

Original entry on oeis.org

1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1
Offset: 1

Author

Carlo Sanna, Dec 11 2015

Keywords

Comments

By Wilson's theorem, ((p - 1)/2)!^2 == (-1)^((p + 1)/2) (mod p) for each prime number p. Hence, if p == 3 (mod 4), then ((p - 1)/2)! == +-1 (mod p).
Michele Elia proved that a(n) = (-1)^((1 + h(-p)) / 2) for n > 1, where p is the n-th prime number == 3 (mod 4), and h(-p) is the class number of the quadratic field Q(sqrt(-p)).
Mordell (1961) proved the same result 52 years earlier in a 2-page note in the Monthly. - Jonathan Sondow, Apr 09 2017

Examples

			The second prime number == 3 (mod 4) is 7. Since ((7 - 1)/2)! = 3! = 6 == -1 (mod 7), it follows that a(2) = -1.
		

Crossrefs

Programs

  • Maple
    map(p -> if isprime(p) then mods(((p-1)/2)!, p) fi, [seq(i,i=3..10000, 4)]); # Robert Israel, Dec 11 2015
  • Mathematica
    Function[p, Mod[((p-1)/2)!, p, -1]] /@ Select[Range[3, 2003, 4], PrimeQ] (* Jean-François Alcover, Feb 27 2016 *)