1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 6, 5, 3, 1, 1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1, 1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1, 1, 6, 20, 49, 98, 169, 259, 359, 455, 531, 573, 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1, 1, 7, 27, 76, 174, 343, 602, 961, 1415, 1940, 2493, 3017, 3450, 3736, 3836, 3736, 3450, 3017, 2493, 1940, 1415, 961, 602, 343, 174, 76, 27, 7, 1, 1, 8, 35, 111, 285, 628, 1230, 2191, 3606, 5545, 8031, 11021, 14395, 17957, 21450, 24584, 27073, 28675, 29228, 28675, 27073, 24584, 21450, 17957, 14395, 11021, 8031, 5545, 3606, 2191, 1230, 628, 285, 111, 35, 8, 1
Offset: 1
1; 1+x; (1+x)*(1+x+x^2) = 1+2*x+2*x^2+x^3; etc.
Triangle begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10
---+--------------------------------------------------------------
1 | 1;
2 | 1, 1;
3 | 1, 2, 2, 1;
4 | 1, 3, 5, 6, 5, 3, 1;
5 | 1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1;
6 | 1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, ...
7 | 1, 6, 20, 49, 98, 169, 259, 359, 455, 531, 573, ...
8 | 1, 7, 27, 76, 174, 343, 602, 961, 1415, 1940, 2493, ...
9 | 1, 8, 35, 111, 285, 628, 1230, 2191, 3606, 5545, 8031, ...
10 | 1, 9, 44, 155, 440, 1068, 2298, 4489, 8095, 13640, 21670, ...
From _Gus Wiseman_, Aug 12 2020: (Start)
Row n = 4 counts the following submultisets of {1,1,1,2,2,3}:
{} {1} {11} {111} {1112} {11122} {111223}
{2} {12} {112} {1122} {11123}
{3} {22} {122} {1113} {11223}
{13} {113} {1123}
{23} {123} {1223}
{223}
(End)
Comments