cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 126 results. Next

A064612 Partial sum of bigomega is divisible by n, where bigomega(n)=A001222(n) and summatory-bigomega(n)=A022559(n).

Original entry on oeis.org

1, 4, 5, 2178, 416417176, 416417184, 416417185, 416417186, 416417194, 416417204, 416417206, 416417208, 416417213, 416417214, 416417231, 416417271, 416417318, 416417319, 416417326, 416417335, 416417336, 416417338, 416417339, 416417374
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056650, A064605-A064607, A064610, A064611, A048290, A062982, A045345.
Partial sums of A001222, similarly to summatory A001221 increases like loglog(n), explaining small quotients.
a(25) > 10^13. - Giovanni Resta, Apr 25 2017

Examples

			Sum of bigomega values from 1 to 5 is: 0+0+1+1+2+1=5, which is divisible by n=5, so 5 is here, with quotient=1. For the last value,2178,below 1000000 the quotient is only 3.
		

Crossrefs

Formula

Mod[A022559(n), n]=0

Extensions

a(5)-a(24) from Donovan Johnson, Nov 15 2009

A088542 Prime numbers p such that A022559(p) is a multiple of A000720(p).

Original entry on oeis.org

2, 3, 7, 71, 179, 547, 983, 1283, 1289, 2909, 3709, 20269, 40829, 256579, 772573
Offset: 1

Views

Author

Cino Hilliard, Nov 16 2003

Keywords

Comments

Also primes p such that the number of prime factors (with repetition) of p! is a multiple of the number of different prime factors of p! (Prime numbers in A088533).

Examples

			A022559(7) = 8 is a multiple of A000720(7) = 4.
		

Crossrefs

Programs

  • Mathematica
    a = {2}; b = {1}; For[n = 3, n < 1000, n++, If[PrimeQ[n], AppendTo[b, 1], c = FactorInteger[n]; For[j = 1, j < Length[c] + 1, j++, b[[PrimePi[c[[j, 1]]]]] = b[[PrimePi[c[[j, 1]]]]] + c[[j, 2]]]]; If[Mod[Plus @@ b, Length[b]] == 0, If[PrimeQ[n], AppendTo[a, n]]]]; a
    Select[Prime[Range[530]],Divisible[PrimeOmega[#!],PrimeNu[#!]]&] (* The program generates the first 11 terms of the sequence. To generate more, increase the Range constant, but the program will then take a long time to run. *) (* Harvey P. Dale, Jan 01 2020 *)
  • PARI
    for(x=2,10000,x1=x!;y=bigomega(x1)/omega(x1); if(y==floor(y),if(isprime(x), print1((x)","))))

Extensions

Edited and extended by Stefan Steinerberger, Dec 11 2007
Offset corrected by Mohammed Yaseen, Jul 20 2023
a(14)-a(15) from Alois P. Heinz, Jul 20 2023

A001222 Number of prime divisors of n counted with multiplicity (also called big omega of n, bigomega(n) or Omega(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 3, 6, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 5, 4, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 3, 2, 2, 2, 6, 1, 3, 3, 4, 1, 3, 1, 4, 3, 2, 1, 5, 1, 3, 2
Offset: 1

Views

Author

Keywords

Comments

Maximal number of terms in any factorization of n.
Number of prime powers (not including 1) that divide n.
Sum of exponents in prime-power factorization of n. - Daniel Forgues, Mar 29 2009
Sum_{d|n} 2^(-A001221(d) - a(n/d)) = Sum_{d|n} 2^(-a(d) - A001221(n/d)) = 1 (see Dressler and van de Lune link). - Michel Marcus, Dec 18 2012
Row sums in A067255. - Reinhard Zumkeller, Jun 11 2013
Conjecture: Let f(n) = (x+y)^a(n), and g(n) = x^a(n), and h(n) = (x+y)^A046660(n) * y^A001221(n) with x, y complex numbers and 0^0 = 1. Then f(n) = Sum_{d|n} g(d)*h(n/d). This is proved for x = 1-y (see Dressler and van de Lune link). - Werner Schulte, Feb 10 2018
Let r, s be some fixed integers. Then we have:
(1) The sequence b(n) = Dirichlet convolution of r^bigomega(n) and s^bigomega(n) is multiplicative with b(p^e) = (r^(e+1)-s^(e+1))/(r-s) for prime p and e >= 0. The case r = s leads to b(p^e) = (e+1)*r^e.
(2) The sequence c(n) = Dirichlet convolution of r^bigomega(n) and mu(n)*s^bigomega(n) is multiplicative with c(p^e) = (r-s)*r^(e-1) and c(1) = 1 for prime p and e > 0 where mu(n) = A008683(n). - Werner Schulte, Feb 20 2019
a(n) is also the length of the composition series for every solvable group of order n. - Miles Englezou, Apr 25 2024

Examples

			16=2^4, so a(16)=4; 18=2*3^2, so a(18)=3.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 119, #12, omega(n).
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, pp. 48-57.
  • M. Kac, Statistical Independence in Probability, Analysis and Number Theory, Carus Monograph 12, Math. Assoc. Amer., 1959, see p. 64.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 92.

Crossrefs

Cf. A001221 (omega, primes counted without multiplicity), A008836 (Liouville's lambda, equal to (-1)^a(n)), A046660, A144494, A074946, A134334.
Bisections give A091304 and A073093. A086436 is essentially the same sequence. Cf. A022559 (partial sums), A066829 (parity), A092248 (parity of omega).
Sequences listing n such that a(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
Cf. A079149 (primes adj. to integers with at most 2 prime factors, a(n)<=2).
Cf. A027748 (without repetition).
Cf. A000010.

Programs

  • GAP
    Concatenation([0],List([2..150],n->Length(Factors(n)))); # Muniru A Asiru, Feb 21 2019
    
  • Haskell
    import Math.NumberTheory.Primes.Factorisation (factorise)
    a001222 = sum . snd . unzip . factorise
    -- Reinhard Zumkeller, Nov 28 2015
    
  • Julia
    using Nemo
    function NumberOfPrimeFactors(n; distinct=true)
        distinct && return length(factor(ZZ(n)))
        sum(e for (p, e) in factor(ZZ(n)); init=0)
    end
    println([NumberOfPrimeFactors(n, distinct=false) for n in 1:60])  # Peter Luschny, Jan 02 2024
  • Magma
    [n eq 1 select 0 else &+[p[2]: p in Factorization(n)]: n in [1..120]]; // Bruno Berselli, Nov 27 2013
    
  • Maple
    with(numtheory): seq(bigomega(n), n=1..111);
  • Mathematica
    Array[ Plus @@ Last /@ FactorInteger[ # ] &, 105]
    PrimeOmega[Range[120]] (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    vector(100,n,bigomega(n))
    
  • Python
    from sympy import primeomega
    def a(n): return primeomega(n)
    print([a(n) for n in range(1, 112)]) # Michael S. Branicky, Apr 30 2022
    
  • SageMath
    [sloane.A001222(n) for n in (1..120)] # Giuseppe Coppoletta, Jan 19 2015
    
  • SageMath
    [gp.bigomega(n) for n in range(1,131)] # G. C. Greubel, Jul 13 2024
    
  • Scheme
    (define (A001222 n) (let loop ((n n) (z 0)) (if (= 1 n) z (loop (/ n (A020639 n)) (+ 1 z)))))
    ;; Requires also A020639 for which an equally naive implementation can be found under that entry. - Antti Karttunen, Apr 12 2017
    

Formula

n = Product_(p_j^k_j) -> a(n) = Sum_(k_j).
Dirichlet g.f.: ppzeta(s)*zeta(s). Here ppzeta(s) = Sum_{p prime} Sum_{k>=1} 1/(p^k)^s. Note that ppzeta(s) = Sum_{p prime} 1/(p^s-1) and ppzeta(s) = Sum_{k>=1} primezeta(k*s). - Franklin T. Adams-Watters, Sep 11 2005
Totally additive with a(p) = 1.
a(n) = if n=1 then 0 else a(n/A020639(n)) + 1. - Reinhard Zumkeller, Feb 25 2008
a(n) = Sum_{k=1..A001221(n)} A124010(n,k). - Reinhard Zumkeller, Aug 27 2011
a(n) = A022559(n) - A022559(n-1).
G.f.: Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k)). - Ilya Gutkovskiy, Jan 25 2017
a(n) = A091222(A091202(n)) = A000120(A156552(n)). - Antti Karttunen, circa 2004 and Mar 06 2017
a(n) >= A267116(n) >= A268387(n). - Antti Karttunen, Apr 12 2017
Sum_{k=1..n} 2^(-A001221(gcd(n,k)) - a(n/gcd(n,k)))/phi(n/gcd(n,k)) = Sum_{k=1..n} 2^(-a(gcd(n,k)) - A001221(n/gcd(n,k)))/phi(n/gcd(n,k)) = 1, where phi = A000010. - Richard L. Ollerton, May 13 2021
a(n) = a(A046523(n)) = A007814(A108951(n)) = A061395(A122111(n)) = A056239(A181819(n)) = A048675(A293442(n)). - Antti Karttunen, Apr 30 2022

Extensions

More terms from David W. Wilson

A027746 Irregular triangle in which first row is 1, n-th row (n>1) gives prime factors of n with repetition.

Original entry on oeis.org

1, 2, 3, 2, 2, 5, 2, 3, 7, 2, 2, 2, 3, 3, 2, 5, 11, 2, 2, 3, 13, 2, 7, 3, 5, 2, 2, 2, 2, 17, 2, 3, 3, 19, 2, 2, 5, 3, 7, 2, 11, 23, 2, 2, 2, 3, 5, 5, 2, 13, 3, 3, 3, 2, 2, 7, 29, 2, 3, 5, 31, 2, 2, 2, 2, 2, 3, 11, 2, 17, 5, 7, 2, 2, 3, 3, 37, 2, 19, 3, 13, 2, 2, 2, 5, 41, 2, 3, 7, 43, 2, 2, 11, 3, 3, 5
Offset: 1

Views

Author

Keywords

Comments

n-th row has length A001222(n) (n>1).

Examples

			Triangle begins
  1;
  2;
  3;
  2, 2;
  5;
  2, 3;
  7;
  2, 2, 2;
  3, 3;
  2, 5;
  11;
  2, 2, 3;
  ...
		

Crossrefs

a(A022559(A000040(n))+1) = A000040(n).
Column 1 is A020639, columns 2 and 3 correspond to A014673 and A115561.
A281890 measures frequency of each prime in each column, with A281889 giving median values.
Cf. A175943 (partial products), A265110 (partial row products), A265111.

Programs

  • Haskell
    import Data.List (unfoldr)
    a027746 n k = a027746_tabl !! (n-1) !! (k-1)
    a027746_tabl = map a027746_row [1..]
    a027746_row 1 = [1]
    a027746_row n = unfoldr fact n where
       fact 1 = Nothing
       fact x = Just (p, x `div` p) where p = a020639 x
    -- Reinhard Zumkeller, Aug 27 2011
    
  • Maple
    P:=proc(n) local FM: FM:=ifactors(n)[2]: seq(seq(FM[j][1],k=1..FM[j][2]),j=1..nops(FM)) end: 1; for n from 2 to 45 do P(n) od; # yields sequence in triangular form; Emeric Deutsch, Feb 13 2005
  • Mathematica
    row[n_] := Flatten[ Table[#[[1]], {#[[2]]}] & /@ FactorInteger[n]]; Flatten[ Table[ row[n], {n, 1, 45}]] (* Jean-François Alcover, Dec 01 2011 *)
  • PARI
    A027746_row(n,o=[1])=if(n>1,concat(apply(t->vector(t[2],i,t[1]), Vec(factor(n)~))),o) \\ Use %(n,[]) if you want the more natural [] for the first row. - M. F. Hasler, Jul 29 2015
    
  • Python
    def factors(n: int) -> list[int]:
        p = n
        L:list[int] = []
        for f in range(2, p + 1):
            if f * f > p: break
            while True:
                q, r = divmod(p, f)
                if r != 0: break
                L.append(f)
                p = q
                if p == 1: return L
        L.append(p)
        return L  # Peter Luschny, Jul 18 2024
  • Sage
    v=[1]
    for k in [2..45]: v.extend(p for (p, m) in factor(k) for _ in range(m))
    print(v) # Giuseppe Coppoletta, Dec 29 2017
    

Formula

Product_{k=1..A001222(n)} T(n,k) = n.
From Reinhard Zumkeller, Aug 27 2011: (Start)
A001414(n) = Sum_{k=1..A001222(n)} T(n,k), n>1;
A006530(n) = T(n,A001222(n)) = Max_{k=1..A001222(n)} T(n,k);
A020639(n) = T(n,1) = Min_{k=1..A001222(n)} T(n,k). (End)

Extensions

More terms from James Sellers

A008302 Triangle of Mahonian numbers T(n,k): coefficients in expansion of Product_{i=0..n-1} (1 + x + ... + x^i), where k ranges from 0 to A000217(n-1). Also enumerates permutations by their major index.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 6, 5, 3, 1, 1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1, 1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1, 1, 6, 20, 49, 98, 169, 259, 359, 455, 531, 573, 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1, 1, 7, 27, 76, 174, 343, 602, 961, 1415, 1940, 2493, 3017, 3450, 3736, 3836, 3736, 3450, 3017, 2493, 1940, 1415, 961, 602, 343, 174, 76, 27, 7, 1, 1, 8, 35, 111, 285, 628, 1230, 2191, 3606, 5545, 8031, 11021, 14395, 17957, 21450, 24584, 27073, 28675, 29228, 28675, 27073, 24584, 21450, 17957, 14395, 11021, 8031, 5545, 3606, 2191, 1230, 628, 285, 111, 35, 8, 1
Offset: 1

Views

Author

Keywords

Comments

T(n,k) is the number of permutations of {1..n} with k inversions.
n-th row gives growth series for symmetric group S_n with respect to transpositions (1,2), (2,3), ..., (n-1,n).
T(n,k) is the number of permutations of (1,2,...,n) having disorder equal to k. The disorder of a permutation p of (1,2,...,n) is defined in the following manner. We scan p from left to right as often as necessary until all its elements are removed in increasing order, scoring one point for each occasion on which an element is passed over and not removed. The disorder of p is the number of points scored by the end of the scanning and removal process. For example, the disorder of (3,5,2,1,4) is 8, since on the first scan, 3,5,2 and 4 are passed over, on the second, 3,5 and 4 and on the third scan, 5 is once again not removed. - Emeric Deutsch, Jun 09 2004
T(n,k) is the number of permutations p=(p(1),...,p(n)) of {1..n} such that Sum_{i: p(i)>p(i+1)} = k (k is called the Major index of p). Example: T(3,0)=1, T(3,1)=2, T(3,2)=2, T(3,3)=1 because the major indices of the permutations (1,2,3), (2,1,3), (3,1,2), (1,3,2), (2,3,1) and (3,2,1) are 0,1,1,2,2 and 3, respectively. - Emeric Deutsch, Aug 17 2004
T(n,k) is the number of 2 X c matrices with column totals 1,2,3,...,n and row totals k and binomial(n+1,2) - k. - Mitch Harris, Jan 13 2006
T(n,k) is the number of permutations p of {1,2,...,n} for which den(p)=k. Here den is the Denert statistic, defined in the following way: let p=p(1)p(2)...p(n) be a permutation of {1,2,...,n}; if p(i)>i, then we say that i is an excedance of p; let i_1 < i_2 < ... < i_k be the excedances of p and let j_1 < j_2 < ... < j_{n-k} be the non-excedances of p; let Exc(p) = p(i_1)p(i_2)...p(i_k), Nexc(p)=p(j_1)p(j_2)...p(j_{n-k}); then, by definition den(p) = i_1 + i_2 + ... + i_k + inv(Exc(p)) + inv(Nexc(p)), where inv denotes "number of inversions". Example: T(4,5)=3 because we have 1342, 3241 and 4321. We show that den(4321)=5: the excedances are 1 and 2; Exc(4321)=43, Nexc(4321)=21; now den(4321) = 1 + 2 + inv(43) + inv(21) = 3+1+1 = 5. - Emeric Deutsch, Oct 29 2008
T(n,k) is the number of size k submultisets of the multiset {1,2,2,3,3,3,...,n-1} (which contains i copies of i for 0 < i < n).
The limit of products of the numbers of fixed necklaces of length n composed of beads of types N(n,b), n --> infinity, is the generating function for inversions (we must exclude one unimportant factor b^n/n!). The error is < (b^n/n!)*O(1/n^(1/2-epsilon)). See Gaichenkov link. - Mikhail Gaichenkov, Aug 27 2012
The number of ways to distribute k-1 indistinguishable balls into n-1 boxes of capacity 1,2,3,...,n-1. - Andrew Woods, Sep 26 2012
Partial sums of rows give triangle A161169. - András Salamon, Feb 16 2013
The number of permutations of n that require k pair swaps in the bubble sort to sort them into the natural 1,2,...,n order. - R. J. Mathar, May 04 2013
Also series coefficients of q-factorial [n]q ! -- see Mathematica line. - _Wouter Meeussen, Jul 12 2014
From Mikhail Gaichenkov, Aug 16 2016: (Start)
Following asymptotic expansions in the Central Limit Theorem developed by Valentin V. Petrov, the cumulative distribution function of these numbers, CDF_N(x), is equal to the CDF of the normal distribution - (0.06/sqrt(2*Pi))*exp(-x^2/2)(x^3-3x)*(6N^3+21N^2+31N+31)/(N(2N+5)^2(N-1)+O(1/N^2).
This can be written as: CDF of the normal distribution -(0.09/(N*sqrt(2*Pi)))*exp(-x^2/2)*He_3(x) + O(1/N^2), N > 1, natural numbers (Gaichenkov, private research).
According to B. H. Margolius, Permutations with inversions, J. Integ. Seqs. Vol. 4 (2001), #01.2.4, "the unimodal behavior of the inversion numbers suggests that the number of inversions in a random permutation may be asymptotically normal". See links.
Moreover, E. Ben-Naim (Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory), "On the Mixing of Diffusing Particles" (13 Oct 2010), states that the Mahonian Distribution becomes a function of a single variable for large numbers of element, i.e., the probability distribution function is normal. See links.
To be more precise the expansion of the distribution is presented for a finite number of elements (or particles in terms of E. Ben-Naim's article). The distribution tends to the normal distribution for an infinite numbers of elements.
(End)
T(n,k) statistic counts (labeled) permutation graphs with n vertices and k edges. - Mikhail Gaichenkov, Aug 20 2019
From Gus Wiseman, Aug 12 2020: (Start)
Number of divisors of A006939(n - 1) or A076954(n - 1) with k prime factors, counted with multiplicity, where A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1). For example, row n = 4 counts the following divisors:
1 2 4 8 24 72 360
3 6 12 36 120
5 9 18 40 180
10 20 60
15 30 90
45
Crossrefs:
A336420 is the case with distinct prime multiplicities.
A006939 lists superprimorials or Chernoff numbers.
A022915 counts permutations of prime indices of superprimorials.
A317829 counts factorizations of superprimorials.
A336941 counts divisor chains under superprimorials.
(End)
Named after the British mathematician Percy Alexander MacMahon (1854-1929). - Amiram Eldar, Jun 13 2021
Row maxima ~ n!/(sigma * sqrt(2*Pi)), sigma^2 = (2*n^3 + 9*n^2 + 7*n)/72 = variance of group type A_n (see also A161435). - Mikhail Gaichenkov, Feb 08 2023
Sum_{i>=0} T(n,i)*k^i = A069777(n,k). - Geoffrey Critzer, Feb 26 2025

Examples

			1; 1+x; (1+x)*(1+x+x^2) = 1+2*x+2*x^2+x^3; etc.
Triangle begins:
  n\k| 0  1   2    3    4     5     6     7     8      9     10
  ---+--------------------------------------------------------------
   1 | 1;
   2 | 1, 1;
   3 | 1, 2,  2,   1;
   4 | 1, 3,  5,   6,   5,    3,    1;
   5 | 1, 4,  9,  15,  20,   22,   20,   15,    9,     4,     1;
   6 | 1, 5, 14,  29,  49,   71,   90,  101,  101,    90,    71, ...
   7 | 1, 6, 20,  49,  98,  169,  259,  359,  455,   531,   573, ...
   8 | 1, 7, 27,  76, 174,  343,  602,  961, 1415,  1940,  2493, ...
   9 | 1, 8, 35, 111, 285,  628, 1230, 2191, 3606,  5545,  8031, ...
  10 | 1, 9, 44, 155, 440, 1068, 2298, 4489, 8095, 13640, 21670, ...
From _Gus Wiseman_, Aug 12 2020: (Start)
Row n = 4 counts the following submultisets of {1,1,1,2,2,3}:
  {}  {1}  {11}  {111}  {1112}  {11122}  {111223}
      {2}  {12}  {112}  {1122}  {11123}
      {3}  {22}  {122}  {1113}  {11223}
           {13}  {113}  {1123}
           {23}  {123}  {1223}
                 {223}
(End)
		

References

  • Miklós Bóna, Combinatorics of permutations, Chapman & Hall/CRC, Boca Raton, Florida, 2004 (p. 52).
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 240.
  • Florence Nightingale David, Maurice George Kendall, and David Elliot Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
  • Pierre de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 163, top display.
  • Eugen Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • Valentin V. Petrov, Sums of Independent Random Variables, Springer Berlin Heidelberg, 1975, p. 134.
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Corollary 1.3.10, p. 21.

Crossrefs

Diagonals: A000707 (k=n-1), A001892 (k=n-2), A001893 (k=n-3), A001894 (k=n-4), A005283 (k=n-5), A005284 (k=n-6), A005285 (k=n-7).
Columns: A005286 (k=3), A005287 (k=4), A005288 (k=5), A242656 (k=6), A242657 (k=7).
Rows: A161435 (n=4), A161436 (n=5), A161437 (n=6), A161438 (n=7), A161439 (n=8), A161456 (n=9), A161457 (n=10).
Row-maxima: A000140, truncated table: A060701, row sums: A000142, row lengths: A000124.
A001809 gives total Denert index of all permutations.
A357611 gives a refinement.

Programs

  • Maple
    g := proc(n,k) option remember; if k=0 then return(1) else if (n=1 and k=1) then return(0) else if (k<0 or k>binomial(n,2)) then return(0) else g(n-1,k)+g(n,k-1)-g(n-1,k-n) end if end if end if end proc; # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
    BB:=j->1+sum(t^i, i=1..j): for n from 1 to 8 do Z[n]:=sort(expand(simplify(product(BB(j), j=0..n-2)))) od: for n from 1 to 8 do seq(coeff(Z[n], t, j), j=0..(n-1)*(n-2)/2) od; # Zerinvary Lajos, Apr 13 2007
    # alternative Maple program:
    b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
           add(b(u+j-1, o-j)*x^(u+j-1), j=1..o)+
           add(b(u-j, o+j-1)*x^(u-j), j=1..u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=1..10);  # Alois P. Heinz, May 02 2017
  • Mathematica
    f[n_] := CoefficientList[ Expand@ Product[ Sum[x^i, {i, 0, j}], {j, n}], x]; Flatten[Array[f, 8, 0]]
    (* Second program: *)
    T[0, 0] := 1; T[-1, k_] := 0;
    T[n_, k_] := T[n, k] = If[0 <= k <= n*(n - 1)/2, T[n, k - 1] + T[n - 1, k] - T[n - 1, k - n], 0]; (* Peter Kagey, Mar 18 2021; corrected the program by Mats Granvik and Roger L. Bagula, Jun 19 2011 *)
    alternatively (versions 7 and up):
    Table[CoefficientList[Series[QFactorial[n,q],{q,0,n(n-1)/2}],q],{n,9}] (* Wouter Meeussen, Jul 12 2014 *)
    b[u_, o_] := b[u, o] = Expand[If[u + o == 0, 1,
       Sum[b[u + j - 1, o - j]*x^(u + j - 1), {j, 1, o}] +
       Sum[b[u - j, o + j - 1]*x^(u - j), {j, 1, u}]]];
    T[n_] := With[{p = b[n, 0]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
    Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Apr 21 2025, after Alois P. Heinz *)
  • PARI
    {T(n,k) = my(A=1+x); for(i=1,n, A = 1 + intformal(A - q*subst(A,x,q*x +x^2*O(x^n)))/(1-q)); polcoeff(n!*polcoeff(A,n,x),k,q)}
    for(n=1,10, for(k=0,n*(n-1)/2, print1(T(n,k),", ")); print("")) \\ Paul D. Hanna, Dec 31 2016
    
  • PARI
    row(n)=Vec(prod(k=1,n,(1-'q^k)/(1-'q))); \\ Joerg Arndt, Apr 13 2019
  • Sage
    from sage.combinat.q_analogues import q_factorial
    for n in (1..6): print(q_factorial(n).list()) # Peter Luschny, Jul 18 2016
    

Formula

Bourget, Comtet and Moritz-Williams give recurrences.
Mendes and Stanley give g.f.'s.
G.f.: Product_{j=1..n} (1-x^j)/(1-x) = Sum_{k=0..M} T{n, k} x^k, where M = n*(n-1)/2.
From Andrew Woods, Sep 26 2012, corrected by Peter Kagey, Mar 18 2021: (Start)
T(1, 0) = 1,
T(n, k) = 0 for n < 0, k < 0 or k > n*(n-1)/2.
T(n, k) = Sum_{j=0..n-1} T(n-1, k-j),
T(n, k) = T(n, k-1) + T(n-1, k) - T(n-1, k-n). (End)
E.g.f. satisfies: A(x,q) = 1 + Integral (A(x,q) - q*A(q*x,q))/(1-q) dx, where A(x,q) = Sum_{n>=0} x^n/n! * Sum_{k=0..n*(n-1)/2} T(n,k)*q^k, when T(0,0) = 1 is included. - Paul D. Hanna, Dec 31 2016

Extensions

There were some mistaken edits to this entry (inclusion of an initial 1, etc.) which I undid. - N. J. A. Sloane, Nov 30 2009
Added mention of "major index" to definition. - N. J. A. Sloane, Feb 10 2019

A006939 Chernoff sequence: a(n) = Product_{k=1..n} prime(k)^(n-k+1).

Original entry on oeis.org

1, 2, 12, 360, 75600, 174636000, 5244319080000, 2677277333530800000, 25968760179275365452000000, 5793445238736255798985527240000000, 37481813439427687898244906452608585200000000, 7517370874372838151564668004911177464757864076000000000, 55784440720968513813368002533861454979548176771615744085560000000000
Offset: 0

Views

Author

Keywords

Comments

Product of first n primorials: a(n) = Product_{i=1..n} A002110(i).
Superprimorials, from primorials by analogy with superfactorials.
Smallest number k with n distinct exponents in its prime factorization, i.e., A071625(k) = n.
Subsequence of A130091. - Reinhard Zumkeller, May 06 2007
Hankel transform of A171448. - Paul Barry, Dec 09 2009
This might be a good place to explain the name "Chernoff sequence" since his name does not appear in the References or Links as of Mar 22 2014. - Jonathan Sondow, Mar 22 2014
Pickover (1992) named this sequence after Paul Chernoff of California, who contributed this sequence to his book. He was possibly referring to American mathematician Paul Robert Chernoff (1942 - 2017), a professor at the University of California. - Amiram Eldar, Jul 27 2020

Examples

			a(4) = 360 because 2^3 * 3^2 * 5 = 1 * 2 * 6 * 30 = 360.
a(5) = 75600 because 2^4 * 3^3 * 5^2 * 7 = 1 * 2 * 6 * 30 * 210 = 75600.
		

References

  • Clifford A. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 351.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James K. Strayer, Elementary number theory, Waveland Press, Inc., Long Grove, IL, 1994. See p. 37.

Crossrefs

Cf. A000178 (product of first n factorials), A007489 (sum of first n factorials), A060389 (sum of first n primorials).
A000142 counts divisors of superprimorials.
A000325 counts uniform divisors of superprimorials.
A008302 counts divisors of superprimorials by bigomega.
A022915 counts permutations of prime indices of superprimorials.
A076954 is a sister-sequence.
A118914 has row a(n) equal to {1..n}.
A124010 has row a(n) equal to {n..1}.
A130091 lists numbers with distinct prime multiplicities.
A317829 counts factorizations of superprimorials.
A336417 counts perfect-power divisors of superprimorials.
A336426 gives non-products of superprimorials.

Programs

  • Haskell
    a006939 n = a006939_list !! n
    a006939_list = scanl1 (*) a002110_list -- Reinhard Zumkeller, Jul 21 2012
    
  • Magma
    [1] cat [(&*[NthPrime(k)^(n-k+1): k in [1..n]]): n in [1..15]]; // G. C. Greubel, Oct 14 2018
    
  • Maple
    a := []; printlevel := -1; for k from 0 to 20 do a := [op(a),product(ithprime(i)^(k-i+1),i=1..k)] od; print(a);
  • Mathematica
    Rest[FoldList[Times,1,FoldList[Times,1,Prime[Range[15]]]]] (* Harvey P. Dale, Jul 07 2011 *)
    Table[Times@@Table[Prime[i]^(n - i + 1), {i, n}], {n, 12}] (* Alonso del Arte, Sep 30 2011 *)
  • PARI
    a(n)=prod(k=1,n,prime(k)^(n-k+1)) \\ Charles R Greathouse IV, Jul 25 2011
    
  • Python
    from math import prod
    from sympy import prime
    def A006939(n): return prod(prime(k)**(n-k+1) for k in range(1,n+1)) # Chai Wah Wu, Aug 12 2025

Formula

a(n) = m(1)*m(2)*m(3)*...*m(n), where m(n) = n-th primorial number. - N. J. A. Sloane, Feb 20 2005
a(0) = 1, a(n) = a(n - 1)p(n)#, where p(n)# is the n-th primorial A002110(n) (the product of the first n primes). - Alonso del Arte, Sep 30 2011
log a(n) = n^2(log n + log log n - 3/2 + o(1))/2. - Charles R Greathouse IV, Mar 14 2011
A181796(a(n)) = A000110(n+1). It would be interesting to have a bijective proof of this theorem, which is stated at A181796 without proof. See also A336420. - Gus Wiseman, Aug 03 2020

Extensions

Corrected and extended by Labos Elemer, May 30 2001

A013939 Partial sums of sequence A001221 (number of distinct primes dividing n).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 17, 19, 20, 21, 23, 24, 26, 28, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 45, 47, 49, 51, 53, 54, 56, 58, 60, 61, 64, 65, 67, 69, 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 93, 96, 97, 99, 101, 102, 104, 107, 108, 110, 112
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a013939 n = a013939_list !! (n-1)
    a013939_list = scanl1 (+) $ map a001221 [1..]
    -- Reinhard Zumkeller, Feb 16 2012
    
  • Magma
    [(&+[Floor(n/NthPrime(k)): k in [1..n]]): n in [1..70]]; // G. C. Greubel, Nov 24 2018
    
  • Maple
    A013939 := proc(n) option remember;  `if`(n = 1, 0, a(n) + iquo(n+1, ithprime(n+1))) end:
    seq(A013939(i), i = 1..69);  # Peter Luschny, Jul 16 2011
  • Mathematica
    a[n_] := Sum[Floor[n/Prime[k]], {k, 1, n}]; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Jun 11 2012, from 2nd formula *)
    Accumulate[PrimeNu[Range[120]]] (* Harvey P. Dale, Jun 05 2015 *)
  • PARI
    t=0;vector(99,n,t+=omega(n)) \\ Charles R Greathouse IV, Jan 11 2012
    
  • PARI
    a(n)=my(s);forprime(p=2,n,s+=n\p);s \\ Charles R Greathouse IV, Jan 11 2012
    
  • PARI
    a(n) = sum(k=1, sqrtint(n), k * (primepi(n\k) - primepi(n\(k+1)))) + sum(k=1, n\(sqrtint(n)+1), if(isprime(k), n\k, 0)); \\ Daniel Suteu, Nov 24 2018
    
  • Python
    from sympy.ntheory import primefactors
    print([sum(len(primefactors(k)) for k in range(1,n+1)) for n in range(1, 121)]) # Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy import primerange
    def A013939(n): return sum(n//p for p in primerange(n+1)) # Chai Wah Wu, Oct 06 2024
    
  • Sage
    [sum(floor(n/nth_prime(k)) for k in (1..n)) for n in (1..70)] # G. C. Greubel, Nov 24 2018

Formula

a(n) = Sum_{k <= n} omega(k).
a(n) = Sum_{k = 1..n} floor( n/prime(k) ).
a(n) = a(n-1) + A001221(n).
a(n) = A093614(n) - A048865(n); see also A006218.
A027748(a(A000040(n))+1) = A000040(n), A082287(a(n)+1) = n.
a(n) = Sum_{k=1..n} pi(floor(n/k)). - Vladeta Jovovic, Jun 18 2006
a(n) = n log log n + O(n). - Charles R Greathouse IV, Jan 11 2012
a(n) = n*(log log n + B) + o(n), where B = 0.261497... is the Mertens constant A077761. - Arkadiusz Wesolowski, Oct 18 2013
G.f.: (1/(1 - x))*Sum_{k>=1} x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Jan 02 2017
a(n) = Sum_{k=1..floor(sqrt(n))} k * (pi(floor(n/k)) - pi(floor(n/(k+1)))) + Sum_{p prime <= floor(n/(1+floor(sqrt(n))))} floor(n/p). - Daniel Suteu, Nov 24 2018
a(n) = Sum_{k>=1} k * A346617(n,k). - Alois P. Heinz, Aug 19 2021
a(n) = A001222(A048803(n+1)). - Flávio V. Fernandes, Jan 14 2025

Extensions

More terms from Henry Bottomley, Jul 03 2001

A065770 Number of prime cascades to reach 1, where a prime cascade (A065769) is multiplicative with a(p(m)^k) = p(m-1) * p(m)^(k-1).

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 3, 3, 5, 3, 6, 4, 3, 4, 7, 3, 8, 3, 4, 5, 9, 4, 4, 6, 4, 4, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 4, 13, 4, 14, 5, 4, 9, 15, 5, 5, 4, 7, 6, 16, 4, 5, 4, 8, 10, 17, 4, 18, 11, 4, 6, 6, 5, 19, 7, 9, 4, 20, 5, 21, 12, 4, 8, 5, 6, 22, 5, 5, 13, 23, 4, 7, 14, 10, 5, 24, 4, 6, 9, 11
Offset: 1

Views

Author

Henry Bottomley, Nov 19 2001

Keywords

Comments

It seems that a(n) <= A297113(n) for all n. Of the first 10000 positive natural numbers, 6454 are such that a(n) = A297113(n). - Antti Karttunen, Dec 31 2017
Also one plus the maximum number of unit steps East or South in the Young diagram of the integer partition with Heinz number n > 1, starting from the upper-left square and ending in a boundary square in the lower-right quadrant. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 06 2019

Examples

			a(50) = 4 since the cascade goes from 50 = 2^1 * 5^2 to 15 = 3^1 * 5^1 to 6 = 2^1 * 3^1 to 2 = 2^1 to 1.
From _Gus Wiseman_, Apr 06 2019: (Start)
The partition with Heinz number 7865 is (6,5,5,3), with diagram
  o o o o o o
  o o o o o
  o o o o o
  o o o
which has longest path from (1,1) to (5,3) of length 6, so a(7865) = 7.
(End)
		

Crossrefs

Cf. A065769.
Differs from A297113 for the first time at n=20, where a(20) = 3, while A297113(20) = 4.

Programs

  • Mathematica
    Table[If[n==1,0,Max@@Total/@Position[PadRight[ConstantArray[1,#]&/@Sort[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]],Greater]],1]-1],{n,100}] (* Gus Wiseman, Apr 06 2019 *)
  • Scheme
    (definec (A065770 n) (if (= 1 n) 0 (+ 1 (A065770 (A065769 n))))) ;; Antti Karttunen, Dec 31 2017

Formula

Inverse of primes, powers of 2 and primorials in sense that a(A000040(n))=n; a(A000079(n))=n; a(A002110(n))=n. If n>0: a(3^n)=n+1; a(2^n*3^k)=n+k; a(p(k)^n)=n+k-1; a(n!)=A022559(n).
a(1) = 0; and for n > 1, a(n) = 1 + A065769(n). - Antti Karttunen, Dec 31 2017

A071626 Number of distinct exponents in the prime factorization of n!.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Comments

Erdős proved that there exist two constants c1, c2 > 0 such that c1 (n / log(n))^(1/2) < a(n) < c2 (n / log(n))^(1/2). - Carlo Sanna, May 28 2019
R. Heyman and R. Miraj proved that the cardinality of the set { floor(n/p) : p <= n, p prime } is same as the number of distinct exponents in the prime factorization of n!. - Md Rahil Miraj, Apr 05 2024

Examples

			n=7: 7! = 5040 = 2*2*2*2*3*3*5*7; three different exponents arise: 4, 2 and 1; a(7)=3.
n=7: { floor(7/p) : p <= 7, p prime } = {3,2,1}. So, its cardinality is 3. - _Md Rahil Miraj_, Apr 05 2024
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] Table[Length[Union[ep[w! ]]], {w, 1, 100}]
    Table[Length[Union[Last/@If[n==1,{},FactorInteger[n!]]]],{n,30}] (* Gus Wiseman, May 15 2019 *)
  • PARI
    a(n) = #Set(factor(n!)[, 2]); \\ Michel Marcus, Sep 05 2017

Formula

a(n) = A071625(n!) = A323023(n!,3). - Gus Wiseman, May 15 2019

A022915 Multinomial coefficients (0, 1, ..., n)! = C(n+1,2)!/(0!*1!*2!*...*n!).

Original entry on oeis.org

1, 1, 3, 60, 12600, 37837800, 2053230379200, 2431106898187968000, 73566121315513295589120000, 65191584694745586153436251091200000, 1906765806522767212441719098019963758016000000, 2048024348726152339387799085049745725891853852479488000000
Offset: 0

Views

Author

Keywords

Comments

Number of ways to put numbers 1, 2, ..., n*(n+1)/2 in a triangular array of n rows in such a way that each row is increasing. Also number of ways to choose groups of 1, 2, 3, ..., n-1 and n objects out of n*(n+1)/2 objects. - Floor van Lamoen, Jul 16 2001
a(n) is the number of ways to linearly order the multiset {1,2,2,3,3,3,...n,n,...n}. - Geoffrey Critzer, Mar 08 2009
Also the number of distinct adjacency matrices in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017

Examples

			From _Gus Wiseman_, Aug 12 2020: (Start)
The a(3) = 60 permutations of the prime indices of A006939(3) = 360:
  (111223)  (121123)  (131122)  (212113)  (231211)
  (111232)  (121132)  (131212)  (212131)  (232111)
  (111322)  (121213)  (131221)  (212311)  (311122)
  (112123)  (121231)  (132112)  (213112)  (311212)
  (112132)  (121312)  (132121)  (213121)  (311221)
  (112213)  (121321)  (132211)  (213211)  (312112)
  (112231)  (122113)  (211123)  (221113)  (312121)
  (112312)  (122131)  (211132)  (221131)  (312211)
  (112321)  (122311)  (211213)  (221311)  (321112)
  (113122)  (123112)  (211231)  (223111)  (321121)
  (113212)  (123121)  (211312)  (231112)  (321211)
  (113221)  (123211)  (211321)  (231121)  (322111)
(End)
		

Crossrefs

A190945 counts the case of anti-run permutations.
A317829 counts partitions of this multiset.
A325617 is the version for factorials instead of superprimorials.
A006939 lists superprimorials or Chernoff numbers.
A008480 counts permutations of prime indices.
A181818 gives products of superprimorials, with complement A336426.

Programs

  • Maple
    with(combinat):
    a:= n-> multinomial(binomial(n+1, 2), $0..n):
    seq(a(n), n=0..12);  # Alois P. Heinz, May 18 2013
  • Mathematica
    Table[Apply[Multinomial ,Range[n]], {n, 0, 20}]  (* Geoffrey Critzer, Dec 09 2012 *)
    Table[Multinomial @@ Range[n], {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
    Table[Binomial[n + 1, 2]!/BarnesG[n + 2], {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
    Table[Length[Permutations[Join@@Table[i,{i,n},{i}]]],{n,0,4}] (* Gus Wiseman, Aug 12 2020 *)
  • PARI
    a(n) = binomial(n+1,2)!/prod(k=1, n, k^(n+1-k)); \\ Michel Marcus, May 02 2019

Formula

a(n) = (n*(n+1)/2)!/(0!*1!*2!*...*n!).
a(n) = a(n-1) * A014068(n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001.
a(n) = A052295(n)/A000178(n). - Lekraj Beedassy, Feb 19 2004
a(n) = A208437(n*(n+1)/2,n). - Alois P. Heinz, Apr 08 2016
a(n) ~ A * exp(n^2/4 + n + 1/6) * n^(n^2/2 + 7/12) / (2^((n+1)^2/2) * Pi^(n/2)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 02 2019
a(n) = A327803(n*(n+1)/2,n). - Alois P. Heinz, Sep 25 2019
a(n) = A008480(A006939(n)). - Gus Wiseman, Aug 12 2020

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 11 2001
More terms from Michel ten Voorde, Apr 12 2001
Better definition from L. Edson Jeffery, May 18 2013
Showing 1-10 of 126 results. Next