cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 3319 results. Next

A241909 Self-inverse permutation of natural numbers: a(1)=1, a(p_i) = 2^i, and if n = p_i1 * p_i2 * p_i3 * ... * p_{ik-1} * p_ik, where p's are primes, with their indexes are sorted into nondescending order: i1 <= i2 <= i3 <= ... <= i_{k-1} <= ik, then a(n) = 2^(i1-1) * 3^(i2-i1) * 5^(i3-i2) * ... * p_k^(1+(ik-i_{k-1})). Here k = A001222(n) and ik = A061395(n).

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 16, 5, 6, 27, 32, 25, 64, 81, 18, 7, 128, 15, 256, 125, 54, 243, 512, 49, 12, 729, 10, 625, 1024, 75, 2048, 11, 162, 2187, 36, 35, 4096, 6561, 486, 343, 8192, 375, 16384, 3125, 50, 19683, 32768, 121, 24, 45, 1458, 15625, 65536, 21, 108, 2401
Offset: 1

Views

Author

Antti Karttunen, May 03 2014, partly inspired by Marc LeBrun's Jan 11 2006 message on SeqFan mailing list

Keywords

Comments

This permutation maps between the partitions as ordered in A112798 and A241918 (the original motivation for this sequence).
For all n > 2, A007814(a(n)) = A055396(n)-1, which implies that this self-inverse permutation maps between primes (A000040) and the powers of two larger than one (A000079(n>=1)), and apart from a(1) & a(2), this also maps each even number to some odd number, and vice versa, which means there are no fixed points after 2.
A122111 commutes with this one, that is, a(n) = A122111(a(A122111(n))).
Conjugates between A243051 and A242424 and other rows of A243060 and A243070.

Examples

			For n = 12 = 2 * 2 * 3 = p_1 * p_1 * p_2, we obtain by the first formula 2^(1-1) * 3^(1-1) * 5^(1+(2-1)) = 5^2 = 25. By the second formula, as n = 2^2 * 3^1, we obtain the same result, p_{1+2} * p_{2+1} = p_3 * p_3 = 25, thus a(12) = 25.
Using the product formula over the terms of row n of table A241918, we see, because 9450 = 2*3*3*3*5*5*7 = p_1^1 * p_2^3 * p_3^2 * p_4^1, that the corresponding row in A241918 is {2,5,7,7}, and multiplying p_2 * p_5 * p_7^2 yields 3 * 11 * 17 * 17 = 9537, thus a(9450) = 9537.
Similarly, for 9537, the corresponding row in A241918 is {1,2,2,2,3,3,4}, and multiplying p_1^1 * p_2^3 * p_3^2 * p_4^1, we obtain 9450 back.
		

Crossrefs

Cf. also A278220 (= A046523(a(n))), A331280 (its rgs_transform), A331299 (= min(n,a(n))).
{A000027, A122111, A241909, A241916} form a 4-group.

Programs

  • Haskell
    a241909 1 = 1
    a241909 n = product $ zipWith (^) a000040_list $ zipWith (-) is (1 : is)
                where is = reverse ((j + 1) : js)
                      (j:js) = reverse $ map a049084 $ a027746_row n
    -- Reinhard Zumkeller, Aug 04 2014
    
  • Mathematica
    Array[If[# == 1, 1, Function[t, Times @@ Prime@ Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@ t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, #]]]]@ ConstantArray[0, Transpose[#][[1, -1]]] &[FactorInteger[#] /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]] &, 56] (* Michael De Vlieger, Jan 23 2020 *)
  • PARI
    A241909(n) = if(1==n||isprime(n),2^primepi(n),my(f=factor(n),h=1,i,m=1,p=1,k=1); while(k<=#f~, p = nextprime(1+p); i = primepi(f[k,1]); m *= p^(i-h); h = i; if(f[k,2]>1, f[k,2]--, k++)); (p*m)); \\ Antti Karttunen, Jan 17 2020

Formula

If n is a prime with index i (p_i), then a(n) = 2^i, otherwise when n = p_i1 * p_i2 * p_i3 * ... p_ik, where p_i1, p_i2, p_i3, ..., p_ik are the primes present (not necessarily all distinct) in the prime factorization of n, sorted into nondescending order, a(n) = 2^(i1-1) * 3^(i2-i1) * 5^(i3-i2) * ... * p_k^(1+(ik-i_{k-1})).
Equally, if n = 2^k, then a(n) = p_k, otherwise, when n = 2^e1 * 3^e2 * 5^e3 * ... * p_k^{e_k}, i.e., where e1 ... e_k are the exponents (some of them possibly zero, except the last) of the primes 2, 3, 5, ... in the prime factorization of n, a(n) = p_{1+e1} * p_{1+e1+e2} * p_{1+e1+e2+e3} * ... * p_{e1+e2+e3+...+e_k}.
From the equivalence of the above two formulas (which are inverses of each other) it follows that a(a(n)) = n, i.e., that this permutation is an involution. For a proof, please see the attached notes.
The first formula corresponds to this recurrence:
a(1) = 1, a(p_k) = 2^k for primes with index k, otherwise a(n) = (A000040(A001222(n))^(A241917(n)+1)) * A052126(a(A052126(n))).
And the latter formula with this recurrence:
a(1) = 1, and for n>1, if n = 2^k, a(n) = A000040(k), otherwise a(n) = A000040(A001511(n)) * A242378(A007814(n), a(A064989(n))).
[Here A242378(k,n) changes each prime p(i) in the prime factorization of n to p(i+k), i.e., it's the result of A003961 iterated k times starting from n.]
We also have:
a(1)=1, and for n>1, a(n) = Product_{i=A203623(n-1)+2..A203623(n)+1} A000040(A241918(i)).
For all n >= 1, A001222(a(n)) = A061395(n), and vice versa, A061395(a(n)) = A001222(n).
For all n > 1, a(2n-1) = 2*a(A064216(n)).

Extensions

Typos in the name corrected by Antti Karttunen, May 31 2014

A061142 Replace each prime factor of n with 2: a(n) = 2^bigomega(n), where bigomega = A001222, number of prime factors counted with multiplicity.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 8, 4, 4, 2, 8, 2, 4, 4, 16, 2, 8, 2, 8, 4, 4, 2, 16, 4, 4, 8, 8, 2, 8, 2, 32, 4, 4, 4, 16, 2, 4, 4, 16, 2, 8, 2, 8, 8, 4, 2, 32, 4, 8, 4, 8, 2, 16, 4, 16, 4, 4, 2, 16, 2, 4, 8, 64, 4, 8, 2, 8, 4, 8, 2, 32, 2, 4, 8, 8, 4, 8, 2, 32, 16, 4, 2, 16, 4, 4, 4, 16, 2, 16, 4, 8, 4, 4, 4
Offset: 1

Views

Author

Henry Bottomley, May 29 2001

Keywords

Comments

The inverse Möbius transform of A162510. - R. J. Mathar, Feb 09 2011

Examples

			a(100)=16 since 100=2*2*5*5 and so a(100)=2*2*2*2.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(2^bigomega(n),n=1..95);
  • Mathematica
    Table[2^PrimeOmega[n], {n, 1, 95}] (* Jean-François Alcover, Jun 08 2013 *)
  • PARI
    a(n)=direuler(p=1,n,1/(1-2*X))[n] /* Ralf Stephan, Mar 28 2015 */
    
  • PARI
    a(n) = 2^bigomega(n); \\ Michel Marcus, Aug 08 2017

Formula

a(n) = Sum_{d divides n} 2^(bigomega(d)-omega(d)) = Sum_{d divides n} 2^(A001222(d) - A001221(d)). - Benoit Cloitre, Apr 30 2002
a(n) = A000079(A001222(n)), i.e., a(n)=2^bigomega(n). - Emeric Deutsch, Feb 13 2005
Totally multiplicative with a(p) = 2. - Franklin T. Adams-Watters, Oct 04 2006
Dirichlet g.f.: Product_{p prime} 1/(1-2*p^(-s)). - Ralf Stephan, Mar 28 2015
a(n) = A001316(A156552(n)). - Antti Karttunen, May 29 2017
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} 1/(1 - 1/(p^s - 1)^2). - Vaclav Kotesovec, Mar 14 2023

A119899 Integers i such that bigomega(i) (A001222) and tau(i) (A000005) are both even.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 24, 26, 33, 34, 35, 38, 39, 40, 46, 51, 54, 55, 56, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 104, 106, 111, 115, 118, 119, 122, 123, 126, 129, 132, 133, 134, 135, 136, 140, 141, 142, 143, 145, 146, 150
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2006

Keywords

Comments

Also numbers whose alternating sum of prime indices is < 0. Equivalently, numbers with even bigomega whose conjugate prime indices are not all even. This is the intersection of A028260 and A000037. - Gus Wiseman, Jun 20 2021

Examples

			From _Gus Wiseman_, Jun 20 2021: (Start)
The sequence of terms together with their prime indices begins:
       6: {1,2}          51: {2,7}          86: {1,14}
      10: {1,3}          54: {1,2,2,2}      87: {2,10}
      14: {1,4}          55: {3,5}          88: {1,1,1,5}
      15: {2,3}          56: {1,1,1,4}      90: {1,2,2,3}
      21: {2,4}          57: {2,8}          91: {4,6}
      22: {1,5}          58: {1,10}         93: {2,11}
      24: {1,1,1,2}      60: {1,1,2,3}      94: {1,15}
      26: {1,6}          62: {1,11}         95: {3,8}
      33: {2,5}          65: {3,6}          96: {1,1,1,1,1,2}
      34: {1,7}          69: {2,9}         104: {1,1,1,6}
      35: {3,4}          74: {1,12}        106: {1,16}
      38: {1,8}          77: {4,5}         111: {2,12}
      39: {2,6}          82: {1,13}        115: {3,9}
      40: {1,1,1,3}      84: {1,1,2,4}     118: {1,17}
      46: {1,9}          85: {3,7}         119: {4,7}
(End)
		

Crossrefs

Superset: A119847. Subset: A006881. The intersection of A028260 and A000037.
Positions of negative terms in A316524.
The partitions with these Heinz numbers are counted by A344608.
Complement of A344609.

Programs

  • Mathematica
    Select[Range[200],And@@EvenQ[{PrimeOmega[#],DivisorSigma[0,#]}]&] (* Harvey P. Dale, Jan 24 2013 *)

A340610 Numbers whose number of prime factors (A001222) divides their greatest prime index (A061395).

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 11, 13, 14, 17, 19, 20, 21, 23, 26, 29, 30, 31, 35, 37, 38, 39, 41, 43, 45, 47, 49, 50, 52, 53, 56, 57, 58, 59, 61, 65, 67, 71, 73, 74, 75, 78, 79, 83, 84, 86, 87, 89, 91, 92, 95, 97, 101, 103, 106, 107, 109, 111, 113, 117, 122, 125, 126, 127
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     2: {1}        29: {10}       56: {1,1,1,4}
     3: {2}        30: {1,2,3}    57: {2,8}
     5: {3}        31: {11}       58: {1,10}
     6: {1,2}      35: {3,4}      59: {17}
     7: {4}        37: {12}       61: {18}
     9: {2,2}      38: {1,8}      65: {3,6}
    11: {5}        39: {2,6}      67: {19}
    13: {6}        41: {13}       71: {20}
    14: {1,4}      43: {14}       73: {21}
    17: {7}        45: {2,2,3}    74: {1,12}
    19: {8}        47: {15}       75: {2,3,3}
    20: {1,1,3}    49: {4,4}      78: {1,2,6}
    21: {2,4}      50: {1,3,3}    79: {22}
    23: {9}        52: {1,1,6}    83: {23}
    26: {1,6}      53: {16}       84: {1,1,2,4}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The case of equality is A047993 (A106529).
The case where all parts are multiples, not just the maximum part, is A143773 (A316428), with strict case A340830, while the case of factorizations is A340853.
These are the Heinz numbers of certain partitions counted by A168659.
The reciprocal version is A340609.
The squarefree case is A340828 (A340856).
A001222 counts prime factors.
A006141 counts partitions whose length equals their minimum (A324522).
A056239 adds up prime indices.
A061395 selects the maximum prime index.
A067538 counts partitions whose length divides their sum (A316413).
A067538 counts partitions whose maximum divides their sum (A326836).
A112798 lists the prime indices of each positive integer.
A200750 counts partitions with length coprime to maximum (A340608).

Programs

  • Maple
    filter:= proc(n) local F,m,g,t;
      F:= ifactors(n)[2];
      m:= add(t[2],t=F);
      g:= numtheory:-pi(max(seq(t[1],t=F)));
      g mod m = 0;
    end proc:
    select(filter, [$2..1000]); # Robert Israel, Feb 08 2021
  • Mathematica
    Select[Range[2,100],Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&]

Formula

A001222(a(n)) divides A061395(a(n)).

A146291 Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A001222(n)), giving the number of divisors of n with m prime factors (counted with multiplicity).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2
Offset: 1

Views

Author

Matthew Vandermast, Nov 11 2008

Keywords

Comments

All rows are palindromic. T(n,0) = T(n,A001222(n)) = 1.
Two numbers have identical rows in the table if and only if they have the same prime signature.
If n is a perfect square then Sum_{even m} T(n,m) = 1 + Sum_{odd m} T(n,m), otherwise Sum_{even m} T(n,m) = Sum_{odd m} T(n,m). - Geoffrey Critzer, Feb 08 2015

Examples

			Rows begin:
1;
1, 1;
1, 1;
1, 1, 1;
1, 1;
1, 2, 1;
1, 1;
1, 1, 1, 1;
1, 1, 1;
1, 2, 1;
...
12 has 1 divisor with 0 total prime factors (1), 2 with 1 (2 and 3), 2 with 2 (4 and 6) and 1 with 3 (12), for a total of 6. The 12th row of the table therefore reads (1, 2, 2, 1). These are the positive coefficients of the polynomial 1 + 2k + 2k^2 + (1)k^3 = (1 + k + k^2)(1 + k), derived from the prime factorization of 12 (namely, 2^2*3^1).
		

Crossrefs

Row sums equal A000005(n). T(n,1) = A001221(n) for n>1.
Row n of A007318 is identical to row A002110(n) of this table and also identical to the row for any squarefree number with n prime factors.

Programs

  • Maple
    with(numtheory):
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
             add(x^bigomega(d), d=divisors(n))):
    seq(T(n), n=1..100);  # Alois P. Heinz, Feb 25 2015
  • Mathematica
    Join[{{1}},
    Table[nn = DivisorSigma[0, n];
      CoefficientList[
       Series[Product[(1 - x^i)/(1 - x), {i,
    FactorInteger[n][[All, 2]] + 1}], {x, 0, nn}], x], {n, 2, 100}]] (* Geoffrey Critzer, Jan 01 2015 *)

Formula

If the canonical factorization of n into prime powers is the product of p^e(p), then T(n,m) is the coefficient of k^m in the polynomial expansion of Product_p (sum_{i=0..e} k^i).

A340609 Numbers whose number of prime factors (A001222) is divisible by their greatest prime index (A061395).

Original entry on oeis.org

2, 4, 6, 8, 9, 16, 20, 24, 30, 32, 36, 45, 50, 54, 56, 64, 75, 81, 84, 96, 125, 126, 128, 140, 144, 160, 176, 189, 196, 210, 216, 240, 256, 264, 294, 315, 324, 350, 360, 384, 396, 400, 416, 440, 441, 486, 490, 512, 525, 540, 576, 594, 600, 616, 624, 660, 686
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
If n is a term, then so is n^k for k > 1. - Robert Israel, Feb 08 2021

Examples

			The sequence of terms together with their prime indices begins:
      2: {1}             64: {1,1,1,1,1,1}      216: {1,1,1,2,2,2}
      4: {1,1}           75: {2,3,3}            240: {1,1,1,1,2,3}
      6: {1,2}           81: {2,2,2,2}          256: {1,1,1,1,1,1,1,1}
      8: {1,1,1}         84: {1,1,2,4}          264: {1,1,1,2,5}
      9: {2,2}           96: {1,1,1,1,1,2}      294: {1,2,4,4}
     16: {1,1,1,1}      125: {3,3,3}            315: {2,2,3,4}
     20: {1,1,3}        126: {1,2,2,4}          324: {1,1,2,2,2,2}
     24: {1,1,1,2}      128: {1,1,1,1,1,1,1}    350: {1,3,3,4}
     30: {1,2,3}        140: {1,1,3,4}          360: {1,1,1,2,2,3}
     32: {1,1,1,1,1}    144: {1,1,1,1,2,2}      384: {1,1,1,1,1,1,1,2}
     36: {1,1,2,2}      160: {1,1,1,1,1,3}      396: {1,1,2,2,5}
     45: {2,2,3}        176: {1,1,1,1,5}        400: {1,1,1,1,3,3}
     50: {1,3,3}        189: {2,2,2,4}          416: {1,1,1,1,1,6}
     54: {1,2,2,2}      196: {1,1,4,4}          440: {1,1,1,3,5}
     56: {1,1,1,4}      210: {1,2,3,4}          441: {2,2,4,4}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The case of equality is A047993 (A106529).
These are the Heinz numbers of certain partitions counted by A168659.
The reciprocal version is A340610, with strict case A340828 (A340856).
If all parts (not just the greatest) are divisors we get A340693 (A340606).
A001222 counts prime factors.
A006141 counts partitions whose length equals their minimum (A324522).
A056239 adds up prime indices.
A061395 selects the maximum prime index.
A067538 counts partitions whose length divides their sum (A316413).
A067538 counts partitions whose maximum divides their sum (A326836).
A112798 lists the prime indices of each positive integer.
A200750 counts partitions with length coprime to maximum (A340608).

Programs

  • Maple
    filter:= proc(n) local F,m,g,t;
      F:= ifactors(n)[2];
      m:= add(t[2],t=F);
      g:= numtheory:-pi(max(seq(t[1],t=F)));
      m mod g = 0;
    end proc:
    seelect(filter, [$2..1000]); # Robert Israel, Feb 08 2021
  • Mathematica
    Select[Range[2,100],Divisible[PrimeOmega[#],PrimePi[FactorInteger[#][[-1,1]]]]&]

Formula

A061395(a(n)) divides A001222(a(n)).

A370802 Positive integers with as many prime factors (A001222) as distinct divisors of prime indices (A370820).

Original entry on oeis.org

1, 2, 6, 9, 10, 22, 25, 28, 30, 34, 42, 45, 62, 63, 66, 75, 82, 92, 98, 99, 102, 104, 110, 118, 121, 134, 140, 147, 152, 153, 156, 166, 170, 186, 210, 218, 228, 230, 232, 234, 246, 254, 260, 275, 276, 279, 289, 308, 310, 314, 315, 330, 342, 343, 344, 348, 350
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All squarefree terms are even.

Examples

			The prime indices of 1617 are {2,4,4,5}, with distinct divisors {1,2,4,5}, so 1617 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    6: {1,2}
    9: {2,2}
   10: {1,3}
   22: {1,5}
   25: {3,3}
   28: {1,1,4}
   30: {1,2,3}
   34: {1,7}
   42: {1,2,4}
   45: {2,2,3}
   62: {1,11}
   63: {2,2,4}
   66: {1,2,5}
   75: {2,3,3}
   82: {1,13}
   92: {1,1,9}
   98: {1,4,4}
   99: {2,2,5}
  102: {1,2,7}
  104: {1,1,1,6}
		

Crossrefs

For factors instead of divisors on the RHS we have A319899.
A version for binary indices is A367917.
For (greater than) instead of (equal) we have A370348, counted by A371171.
The RHS is A370820, for prime factors instead of divisors A303975.
Partitions of this type are counted by A371130, strict A371128.
For divisors instead of factors on LHS we have A371165, counted by A371172.
For only distinct prime factors on LHS we have A371177, counted by A371178.
Other inequalities: A371166, A371167, A371169, A371170.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, A112798 indices, length A001222.
A239312 counts divisor-choosable partitions, ranks A368110.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A370320 counts non-divisor-choosable partitions, ranks A355740.

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]==Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]

Formula

A001222(a(n)) = A370820(a(n)).

A072978 Numbers of the form m*2^Omega(m), where m>1 is odd and Omega(m)=A001222(m), the number of prime factors of m.

Original entry on oeis.org

1, 6, 10, 14, 22, 26, 34, 36, 38, 46, 58, 60, 62, 74, 82, 84, 86, 94, 100, 106, 118, 122, 132, 134, 140, 142, 146, 156, 158, 166, 178, 194, 196, 202, 204, 206, 214, 216, 218, 220, 226, 228, 254, 260, 262, 274, 276, 278, 298, 302, 308, 314, 326, 334, 340, 346
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2002

Keywords

Comments

(number of odd prime factors) = (number of even prime factors).
A000400, A011557, A001023, A001024, A009965, A009966 and A009975 are subsequences. - Reinhard Zumkeller, Jan 06 2008
Subsequence of A028260. - Reinhard Zumkeller, Sep 20 2008

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[2, 500, 2], First[#] == Total[Rest[#]] & [FactorInteger[#][[All, 2]]] &]] (* Paolo Xausa, Feb 19 2025 *)
  • PARI
    isok(k) = {my(v = valuation(k, 2)); bigomega(k >> v) == v;} \\ Amiram Eldar, May 15 2025
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A072978(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def h(x,n): return sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,3,1,n))
        def f(x): return int(n+x-primepi(x>>1)-sum(h(x>>m,m) for m in range(2,x.bit_length()+1))) if x>1 else 1
        return bisection(f,n,n) # Chai Wah Wu, Apr 10 2025
    

Formula

A007814(a(n)) = A087436(a(n)). - Reinhard Zumkeller, Jan 06 2008

A074946 Positive integers n for which the sum of the prime-factorization exponents of n (bigomega(n) = A001222(n)) divides n.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 30, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 53, 56, 58, 59, 60, 61, 62, 63, 66, 67, 71, 73, 74, 75, 78, 79, 80, 82, 83, 84, 86, 88, 89, 94, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106
Offset: 1

Views

Author

Benoit Cloitre, Oct 05 2002

Keywords

Comments

If n is prime, trivially n is in the sequence.
The asymptotic density of this sequence is 0 (Erdős and Pomerance, 1990). - Amiram Eldar, Jul 10 2020

Crossrefs

Cf. A001222, A134334 (complement).

Programs

Formula

a(n) seems to be asymptotic to c*n*log(log(n)) with 1.128 < c < 1.13.

Extensions

Revised definition from Leroy Quet, Sep 11 2008
More terms from Keenan J. A. Down, Dec 08 2016
Smaller boundary for 'c' from Keenan J. A. Down, Dec 08 2016

A113901 Product of omega(n) and bigomega(n) = A001221(n)*A001222(n), where omega(x): number of distinct prime divisors of x. bigomega(x): number of prime divisors of x, counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 3, 2, 4, 1, 6, 1, 4, 4, 4, 1, 6, 1, 6, 4, 4, 1, 8, 2, 4, 3, 6, 1, 9, 1, 5, 4, 4, 4, 8, 1, 4, 4, 8, 1, 9, 1, 6, 6, 4, 1, 10, 2, 6, 4, 6, 1, 8, 4, 8, 4, 4, 1, 12, 1, 4, 6, 6, 4, 9, 1, 6, 4, 9, 1, 10, 1, 4, 6, 6, 4, 9, 1, 10, 4, 4, 1, 12, 4, 4, 4, 8, 1, 12, 4, 6, 4, 4, 4, 12, 1, 6, 6, 8, 1, 9
Offset: 1

Views

Author

Cino Hilliard, Jan 29 2006

Keywords

Comments

Positions of first appearances are A328964. - Gus Wiseman, Nov 05 2019

Crossrefs

A307409(n) is (bigomega(n) - 1) * omega(n).
A328958(n) is sigma_0(n) - bigomega(n) * omega(n).

Programs

  • Mathematica
    Table[PrimeNu[n]*PrimeOmega[n], {n,1,50}] (* G. C. Greubel, Apr 23 2017 *)
  • PARI
    a(n) = omega(n)*bigomega(n);

Formula

a(n) = 1 iff n is prime.
A068993(a(n)) = 4. - Reinhard Zumkeller, Mar 13 2011
a(n) = A066921(n)*A066922(n). - Amiram Eldar, May 07 2025
Showing 1-10 of 3319 results. Next