cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A062319 Number of divisors of n^n, or of A000312(n).

Original entry on oeis.org

1, 1, 3, 4, 9, 6, 49, 8, 25, 19, 121, 12, 325, 14, 225, 256, 65, 18, 703, 20, 861, 484, 529, 24, 1825, 51, 729, 82, 1653, 30, 29791, 32, 161, 1156, 1225, 1296, 5329, 38, 1521, 1600, 4961, 42, 79507, 44, 4005, 4186, 2209, 48, 9457, 99, 5151, 2704, 5565, 54
Offset: 0

Views

Author

Jason Earls, Jul 05 2001

Keywords

Comments

From Gus Wiseman, May 02 2021: (Start)
Conjecture: The number of divisors of n^n equals the number of pairwise coprime ordered n-tuples of divisors of n. Confirmed up to n = 30. For example, the a(1) = 1 through a(5) = 6 tuples are:
(1) (1,1) (1,1,1) (1,1,1,1) (1,1,1,1,1)
(1,2) (1,1,3) (1,1,1,2) (1,1,1,1,5)
(2,1) (1,3,1) (1,1,1,4) (1,1,1,5,1)
(3,1,1) (1,1,2,1) (1,1,5,1,1)
(1,1,4,1) (1,5,1,1,1)
(1,2,1,1) (5,1,1,1,1)
(1,4,1,1)
(2,1,1,1)
(4,1,1,1)
The unordered case (pairwise coprime n-multisets of divisors of n) is counted by A343654.
(End)

Examples

			From _Gus Wiseman_, May 02 2021: (Start)
The a(1) = 1 through a(5) = 6 divisors:
  1  1  1   1    1
     2  3   2    5
     4  9   4    25
        27  8    125
            16   625
            32   3125
            64
            128
            256
(End)
		

Crossrefs

Number of divisors of A000312(n).
Taking Omega instead of sigma gives A066959.
Positions of squares are A173339.
Diagonal n = k of the array A343656.
A000005 counts divisors.
A059481 counts k-multisets of elements of {1..n}.
A334997 counts length-k strict chains of divisors of n.
A343658 counts k-multisets of divisors.
Pairwise coprimality:
- A018892 counts coprime pairs of divisors.
- A084422 counts pairwise coprime subsets of {1..n}.
- A100565 counts pairwise coprime triples of divisors.
- A225520 counts pairwise coprime sets of divisors.
- A343652 counts maximal pairwise coprime sets of divisors.
- A343653 counts pairwise coprime non-singleton sets of divisors > 1.
- A343654 counts pairwise coprime sets of divisors > 1.

Programs

  • Magma
    [NumberOfDivisors(n^n): n in  [0..60]]; // Vincenzo Librandi, Nov 09 2014
    
  • Mathematica
    A062319[n_IntegerQ]:=DivisorSigma[0,n^n]; (* Enrique Pérez Herrero, Nov 09 2010 *)
    Join[{1},DivisorSigma[0,#^#]&/@Range[60]] (* Harvey P. Dale, Jun 06 2024 *)
  • PARI
    je=[]; for(n=0,200,je=concat(je,numdiv(n^n))); je
    
  • PARI
    { for (n=0, 1000, write("b062319.txt", n, " ", numdiv(n^n)); ) } \\ Harry J. Smith, Aug 04 2009
    
  • PARI
    a(n)=local(fm);fm=factor(n);prod(k=1,matsize(fm)[1],fm[k,2]*n+1) \\ Franklin T. Adams-Watters, May 03 2011
    
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, n^omega(d))); \\ Seiichi Manyama, May 12 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A062319(n): return prod(n*d+1 for d in factorint(n).values()) # Chai Wah Wu, Jun 03 2021

Formula

a(n) = A000005(A000312(n)). - Enrique Pérez Herrero, Nov 09 2010
a(2^n) = A002064(n). - Gus Wiseman, May 02 2021
a(prime(n)) = prime(n) + 1. - Gus Wiseman, May 02 2021
a(n) = Product_{i=1..s} (1 + n * m_i) where (m_1,...,m_s) is the sequence of prime multiplicities (prime signature) of n. - Gus Wiseman, May 02 2021
a(n) = Sum_{d|n} n^omega(d) for n > 0. - Seiichi Manyama May 12 2021

A334997 Array T read by ascending antidiagonals: T(n, k) = Sum_{d divides n} T(d, k-1) with T(n, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 3, 4, 1, 1, 2, 6, 4, 5, 1, 1, 4, 3, 10, 5, 6, 1, 1, 2, 9, 4, 15, 6, 7, 1, 1, 4, 3, 16, 5, 21, 7, 8, 1, 1, 3, 10, 4, 25, 6, 28, 8, 9, 1, 1, 4, 6, 20, 5, 36, 7, 36, 9, 10, 1, 1, 2, 9, 10, 35, 6, 49, 8, 45, 10, 11, 1, 1, 6, 3, 16, 15, 56, 7, 64, 9, 55, 11, 12, 1
Offset: 1

Views

Author

Stefano Spezia, May 19 2020

Keywords

Comments

T(n, k) is called the generalized divisor function (see Beekman).
As an array with offset n=1, k=0, T(n,k) is the number of length-k chains of divisors of n. For example, the T(4,3) = 10 chains are: 111, 211, 221, 222, 411, 421, 422, 441, 442, 444. - Gus Wiseman, Aug 04 2022

Examples

			From _Gus Wiseman_, Aug 04 2022: (Start)
Array begins:
       k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
  n=1:  1   1   1   1   1   1   1   1   1
  n=2:  1   2   3   4   5   6   7   8   9
  n=3:  1   2   3   4   5   6   7   8   9
  n=4:  1   3   6  10  15  21  28  36  45
  n=5:  1   2   3   4   5   6   7   8   9
  n=6:  1   4   9  16  25  36  49  64  81
  n=7:  1   2   3   4   5   6   7   8   9
  n=8:  1   4  10  20  35  56  84 120 165
The T(4,5) = 21 chains:
  (1,1,1,1,1)  (4,2,1,1,1)  (4,4,2,2,2)
  (2,1,1,1,1)  (4,2,2,1,1)  (4,4,4,1,1)
  (2,2,1,1,1)  (4,2,2,2,1)  (4,4,4,2,1)
  (2,2,2,1,1)  (4,2,2,2,2)  (4,4,4,2,2)
  (2,2,2,2,1)  (4,4,1,1,1)  (4,4,4,4,1)
  (2,2,2,2,2)  (4,4,2,1,1)  (4,4,4,4,2)
  (4,1,1,1,1)  (4,4,2,2,1)  (4,4,4,4,4)
The T(6,3) = 16 chains:
  (1,1,1)  (3,1,1)  (6,2,1)  (6,6,1)
  (2,1,1)  (3,3,1)  (6,2,2)  (6,6,2)
  (2,2,1)  (3,3,3)  (6,3,1)  (6,6,3)
  (2,2,2)  (6,1,1)  (6,3,3)  (6,6,6)
The triangular form T(n-k,k) gives the number of length k chains of divisors of n - k. It begins:
  1
  1  1
  1  2  1
  1  2  3  1
  1  3  3  4  1
  1  2  6  4  5  1
  1  4  3 10  5  6  1
  1  2  9  4 15  6  7  1
  1  4  3 16  5 21  7  8  1
  1  3 10  4 25  6 28  8  9  1
  1  4  6 20  5 36  7 36  9 10  1
  1  2  9 10 35  6 49  8 45 10 11  1
(End)
		

References

  • Richard Beekman, An Introduction to Number-Theoretic Combinatorics, Lulu Press 2017.

Crossrefs

Cf. A000217 (4th row), A000290 (6th row), A000292 (8th row), A000332 (16th row), A000389 (32nd row), A000537 (36th row), A000578 (30th row), A002411 (12th row), A002417 (24th row), A007318, A027800 (48th row), A335078, A335079.
Column k = 2 of the array is A007425.
Column k = 3 of the array is A007426.
Column k = 4 of the array is A061200.
The transpose of the array is A077592.
The subdiagonal n = k + 1 of the array is A163767.
The version counting all multisets of divisors (not just chains) is A343658.
The strict case is A343662 (row sums: A337256).
Diagonal n = k of the array is A343939.
Antidiagonal sums of the array (or row sums of the triangle) are A343940.
A067824(n) counts strict chains of divisors starting with n.
A074206(n) counts strict chains of divisors from n to 1.
A146291 counts divisors by Omega.
A251683(n,k) counts strict length k + 1 chains of divisors from n to 1.
A253249(n) counts nonempty chains of divisors of n.
A334996(n,k) counts strict length k chains of divisors from n to 1.
A337255(n,k) counts strict length k chains of divisors starting with n.

Programs

  • Mathematica
    T[n_,k_]:=If[n==1,1,Product[Binomial[Extract[Extract[FactorInteger[n],i],2]+k,k],{i,1,Length[FactorInteger[n]]}]]; Table[T[n-k,k],{n,1,13},{k,0,n-1}]//Flatten
  • PARI
    T(n, k) = if (k==0, 1, sumdiv(n, d, T(d, k-1)));
    matrix(10, 10, n, k, T(n, k-1)) \\ to see the array for n>=1, k >=0; \\ Michel Marcus, May 20 2020

Formula

T(n, k) = Sum_{d divides n} T(d, k-1) with T(n, 0) = 1 (see Theorem 3 in Beekman's article).
T(i*j, k) = T(i, k)*T(j, k) if i and j are coprime positive integers (see Lemma 1 in Beekman's article).
T(p^m, k) = binomial(m+k, k) for every prime p (see Lemma 2 in Beekman's article).

Extensions

Duplicate term removed by Stefano Spezia, Jun 03 2020

A077592 Table by antidiagonals of tau_k(n), the k-th Piltz function (see A007425), or n-th term of the sequence resulting from applying the inverse Möbius transform (k-1) times to the all-ones sequence.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 6, 2, 1, 1, 6, 5, 10, 3, 4, 1, 1, 7, 6, 15, 4, 9, 2, 1, 1, 8, 7, 21, 5, 16, 3, 4, 1, 1, 9, 8, 28, 6, 25, 4, 10, 3, 1, 1, 10, 9, 36, 7, 36, 5, 20, 6, 4, 1, 1, 11, 10, 45, 8, 49, 6, 35, 10, 9, 2, 1, 1, 12, 11, 55, 9, 64, 7, 56, 15, 16, 3, 6, 1
Offset: 1

Views

Author

Henry Bottomley, Nov 08 2002

Keywords

Comments

As an array with offset n=0, k=1, also the number of length n chains of divisors of k. - Gus Wiseman, Aug 04 2022

Examples

			T(6,3) = 9 because we have: 1*1*6, 1*2*3, 1*3*2, 1*6*1, 2*1*3, 2*3*1, 3*1*2, 3*2*1, 6*1*1. - _Geoffrey Critzer_, Feb 16 2015
From _Gus Wiseman_, May 03 2021: (Start)
Array begins:
       k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
  n=0:  1   1   1   1   1   1   1   1
  n=1:  1   2   2   3   2   4   2   4
  n=2:  1   3   3   6   3   9   3  10
  n=3:  1   4   4  10   4  16   4  20
  n=4:  1   5   5  15   5  25   5  35
  n=5:  1   6   6  21   6  36   6  56
  n=6:  1   7   7  28   7  49   7  84
  n=7:  1   8   8  36   8  64   8 120
  n=8:  1   9   9  45   9  81   9 165
The triangular form T(n,k) = A(n-k,k) gives the number of length n - k chains of divisors of k. It begins:
  1
  1  1
  1  2  1
  1  3  2  1
  1  4  3  3  1
  1  5  4  6  2  1
  1  6  5 10  3  4  1
  1  7  6 15  4  9  2  1
  1  8  7 21  5 16  3  4  1
  1  9  8 28  6 25  4 10  3  1
  1 10  9 36  7 36  5 20  6  4  1
  1 11 10 45  8 49  6 35 10  9  2  1
(End)
		

Crossrefs

Columns include (with multiplicity and some offsets) A000012, A000027, A000027, A000217, A000027, A000290, A000027, A000292, A000217, A000290, A000027, A002411, A000027, A000290, A000290, A000332 etc.
Cf. A077593.
Row n = 2 of the array is A007425.
Row n = 3 of the array is A007426.
Row n = 4 of the array is A061200.
The diagonal n = k of the array (central column of the triangle) is A163767.
The transpose of the array is A334997.
Diagonal n = k of the array is A343939.
Antidiagonal sums of the array (or row sums of the triangle) are A343940.
A067824(n) counts strict chains of divisors starting with n.
A074206(n) counts strict chains of divisors from n to 1.
A146291(n,k) counts divisors of n with k prime factors (with multiplicity).
A251683(n,k) counts strict length k + 1 chains of divisors from n to 1.
A253249(n) counts nonempty chains of divisors of n.
A334996(n,k) counts strict length k chains of divisors from n to 1.
A337255(n,k) counts strict length k chains of divisors starting with n.

Programs

  • Maple
    with(numtheory):
    A:= proc(n,k) option remember; `if`(k=1, 1,
          add(A(d, k-1), d=divisors(n)))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..14);  # Alois P. Heinz, Feb 25 2015
  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[tau[n - k + 1, k], {n, 14}, {k, n, 1, -1}] // Flatten (* Robert G. Wilson v *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#] + k - 1, k - 1] & /@ FactorInteger[n]); Table[tau[k, n - k + 1], {n, 1, 13}, {k, 1, n}] // Flatten (* Amiram Eldar, Sep 13 2020 *)
    Table[Length[Select[Tuples[Divisors[k],n-k],And@@Divisible@@@Partition[#,2,1]&]],{n,12},{k,1,n}] (* TRIANGLE, Gus Wiseman, May 03 2021 *)
    Table[Length[Select[Tuples[Divisors[k],n-1],And@@Divisible@@@Partition[#,2,1]&]],{n,6},{k,6}] (* ARRAY, Gus Wiseman, May 03 2021 *)

Formula

If n = Product_i p_i^e_i, then T(n,k) = Product_i C(k+e_i-1, e_i). T(n,k) = Sum_d{d|n} T(n-1,d) = A077593(n,k) - A077593(n-1,k).
Columns are multiplicative.
Dirichlet g.f. for column k: Zeta(s)^k. - Geoffrey Critzer, Feb 16 2015
A(n,k) = A334997(k,n). - Gus Wiseman, Aug 04 2022

Extensions

Typo in formula fixed by Geoffrey Critzer, Feb 16 2015

A336420 Irregular triangle read by rows where T(n,k) is the number of divisors of the n-th superprimorial A006939(n) with distinct prime multiplicities and k prime factors counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 5, 2, 1, 1, 1, 4, 3, 11, 7, 7, 10, 5, 2, 1, 1, 1, 5, 4, 19, 14, 18, 37, 25, 23, 15, 23, 10, 5, 2, 1, 1, 1, 6, 5, 29, 23, 33, 87, 70, 78, 74, 129, 84, 81, 49, 39, 47, 23, 10, 5, 2, 1, 1, 1, 7, 6, 41, 34, 52, 165, 144, 183, 196, 424, 317, 376, 325, 299, 431, 304, 261, 172, 129, 81, 103, 47, 23, 10, 5, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.
The n-th superprimorial or Chernoff number is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).
T(n,k) is also the number of length-n vectors 0 <= v_i <= i summing to k whose nonzero values are all distinct.

Examples

			Triangle begins:
  1
  1  1
  1  2  1  1
  1  3  2  5  2  1  1
  1  4  3 11  7  7 10  5  2  1  1
  1  5  4 19 14 18 37 25 23 15 23 10  5  2  1  1
The divisors counted in row n = 4 are:
  1  2  4     8   16   48   144   432  2160  10800  75600
     3  9    12   24   72   360   720  3024
     5  25   18   40   80   400  1008
     7       20   54  108   504  1200
             27   56  112   540  2800
             28  135  200   600
             45  189  675   756
             50            1350
             63            1400
             75            4725
            175
		

Crossrefs

A000110 gives row sums.
A000124 gives row lengths.
A000142 counts divisors of superprimorials.
A006939 lists superprimorials or Chernoff numbers.
A008278 is the version counting only distinct prime factors.
A008302 counts divisors of superprimorials by bigomega.
A022915 counts permutations of prime indices of superprimorials.
A076954 can be used instead of A006939.
A130091 lists numbers with distinct prime multiplicities.
A146291 counts divisors by bigomega.
A181796 counts divisors with distinct prime multiplicities.
A181818 gives products of superprimorials.
A317829 counts factorizations of superprimorials.
A336417 counts perfect-power divisors of superprimorials.
A336498 counts divisors of factorials by bigomega.
A336499 uses factorials instead superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    Table[Length[Select[Divisors[chern[n]],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,0,5},{k,0,n*(n+1)/2}]

A343656 Array read by antidiagonals where A(n,k) is the number of divisors of n^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 5, 2, 1, 1, 6, 5, 7, 3, 4, 1, 1, 7, 6, 9, 4, 9, 2, 1, 1, 8, 7, 11, 5, 16, 3, 4, 1, 1, 9, 8, 13, 6, 25, 4, 7, 3, 1, 1, 10, 9, 15, 7, 36, 5, 10, 5, 4, 1, 1, 11, 10, 17, 8, 49, 6, 13, 7, 9, 2, 1, 1, 12, 11, 19, 9, 64, 7, 16, 9, 16, 3, 6, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 28 2021

Keywords

Comments

First differs from A343658 at A(4,2) = 5, A343658(4,2) = 6.
As a triangle, T(n,k) = number of divisors of k^(n-k).

Examples

			Array begins:
       k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7
  n=1:  1   1   1   1   1   1   1   1
  n=2:  1   2   3   4   5   6   7   8
  n=3:  1   2   3   4   5   6   7   8
  n=4:  1   3   5   7   9  11  13  15
  n=5:  1   2   3   4   5   6   7   8
  n=6:  1   4   9  16  25  36  49  64
  n=7:  1   2   3   4   5   6   7   8
  n=8:  1   4   7  10  13  16  19  22
  n=9:  1   3   5   7   9  11  13  15
Triangle begins:
  1
  1  1
  1  2  1
  1  3  2  1
  1  4  3  3  1
  1  5  4  5  2  1
  1  6  5  7  3  4  1
  1  7  6  9  4  9  2  1
  1  8  7 11  5 16  3  4  1
  1  9  8 13  6 25  4  7  3  1
  1 10  9 15  7 36  5 10  5  4  1
  1 11 10 17  8 49  6 13  7  9  2  1
  1 12 11 19  9 64  7 16  9 16  3  6  1
  1 13 12 21 10 81  8 19 11 25  4 15  2  1
For example, row n = 8 counts the following divisors:
  1  64  243  256  125  36  7  1
     32  81   128  25   18  1
     16  27   64   5    12
     8   9    32   1    9
     4   3    16        6
     2   1    8         4
     1        4         3
              2         2
              1         1
		

Crossrefs

Columns k=1..9 of the array give A000005, A048691, A048785, A344327, A344328, A344329, A343526, A344335, A344336.
Row n = 6 of the array is A000290.
Diagonal n = k of the array is A062319.
Array antidiagonal sums (row sums of the triangle) are A343657.
Dominated by A343658.
A000312 = n^n.
A007318 counts k-sets of elements of {1..n}.
A009998(n,k) = n^k (as an array, offset 1).
A059481 counts k-multisets of elements of {1..n}.

Programs

  • Mathematica
    Table[DivisorSigma[0,k^(n-k)],{n,10},{k,n}]
  • PARI
    A(n, k) = numdiv(n^k); \\ Seiichi Manyama, May 15 2021

Formula

A(n,k) = A000005(A009998(n,k)), where A009998(n,k) = n^k is the interpretation as an array.
A(n,k) = Sum_{d|n} k^omega(d). - Seiichi Manyama, May 15 2021

A146289 Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A001221(n)), giving the number of divisors of n with m distinct prime factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 1, 3, 2, 1, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 3, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 4, 1, 1, 1, 2, 1, 1, 2, 1, 1, 4, 3, 1, 1, 1, 3, 3
Offset: 1

Views

Author

Matthew Vandermast, Nov 11 2008

Keywords

Comments

The formula used in obtaining the n-th row (see below) also gives the number of divisors of the k-th power of n.
Two numbers have identical rows in the table if and only if they have the same prime signature.
T(n,0)=1.

Examples

			Rows begin:
1;
1,1;
1,1;
1,2;
1,1;
1,2,1;
1,1;
1,3;
1,2;
1,2,1;
...
12 has 1 divisor with 0 distinct prime factors (1); 3 with 1 (2, 3 and 4); and 2 with 2 (6 and 12), for a total of 6. The 12th row of the table therefore reads (1, 3, 2). These are the positive coefficients of the polynomial equation 1 + 3k + 2k^2 = (1 + 2k)(1 + k), derived from the prime factorization of 12 (namely, 2^2*3^1).
		

Crossrefs

Row sums equal A000005(n).
T(n, 1) = A001222(n) for n>1. T(n, A001221(n)) = A005361(n).
Row n of A007318 is identical to row A002110(n) of this table and also identical to the row for any squarefree number with n prime factors.
Cf. A146290. Also cf. A146291, A146292.

Programs

  • Maple
    f:= proc(n)
       local F,G,f,t,k;
       F:= ifactors(n)[2];
       G:= mul(1+f[2]*t, f= F);
       seq(coeff(G,t,k),k=0..nops(F));
    end proc:
    seq(f(n),n=1..100); # Robert Israel, Feb 10 2015
  • Mathematica
    Join[{{1}}, Table[nn = DivisorSigma[0, n];CoefficientList[Series[Product[1 + i x, {i, FactorInteger[n][[All, 2]]}], {x, 0,nn}], x], {n, 2, 100}]] // Grid (* Geoffrey Critzer, Feb 09 2015 *)
  • PARI
    tabf(nn) = {for (n=1, nn, vd = divisors(n); vo = vector(#vd, k, omega(vd[k])); for (k=0, vecmax(vo), print1(#select(x->x==k, vo), ", ");); print(););} \\ Michel Marcus, Apr 22 2017

Formula

If the canonical factorization of n into prime powers is Product p^e(p), then T(n, m) is the coefficient of k^m in the polynomial expansion of Product_p (1 + e(p) k).

A163767 a(n) = tau_{n}(n) = number of ordered n-factorizations of n.

Original entry on oeis.org

1, 2, 3, 10, 5, 36, 7, 120, 45, 100, 11, 936, 13, 196, 225, 3876, 17, 3078, 19, 4200, 441, 484, 23, 62400, 325, 676, 3654, 11368, 29, 27000, 31, 376992, 1089, 1156, 1225, 443556, 37, 1444, 1521, 459200, 41, 74088, 43, 43560, 46575, 2116, 47, 11995200, 1225
Offset: 1

Views

Author

Paul D. Hanna, Aug 04 2009

Keywords

Comments

Also the number of length n - 1 chains of divisors of n. - Gus Wiseman, May 07 2021

Examples

			Successive Dirichlet self-convolutions of the all 1's sequence begin:
(1),1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,... (A000012)
1,(2),2,3,2,4,2,4,3,4,2,6,2,4,4,5,... (A000005)
1,3,(3),6,3,9,3,10,6,9,3,18,3,9,9,15,... (A007425)
1,4,4,(10),4,16,4,20,10,16,4,40,4,16,16,35,... (A007426)
1,5,5,15,(5),25,5,35,15,25,5,75,5,25,25,70,... (A061200)
1,6,6,21,6,(36),6,56,21,36,6,126,6,36,36,126,... (A034695)
1,7,7,28,7,49,(7),84,28,49,7,196,7,49,49,210,... (A111217)
1,8,8,36,8,64,8,(120),36,64,8,288,8,64,64,330,... (A111218)
1,9,9,45,9,81,9,165,(45),81,9,405,9,81,81,495,... (A111219)
1,10,10,55,10,100,10,220,55,(100),10,550,10,100,... (A111220)
1,11,11,66,11,121,11,286,66,121,(11),726,11,121,... (A111221)
1,12,12,78,12,144,12,364,78,144,12,(936),12,144,... (A111306)
...
where the main diagonal forms this sequence.
From _Gus Wiseman_, May 07 2021: (Start)
The a(1) = 1 through a(5) = 5 chains of divisors:
  ()  (1)  (1/1)  (1/1/1)  (1/1/1/1)
      (2)  (3/1)  (2/1/1)  (5/1/1/1)
           (3/3)  (2/2/1)  (5/5/1/1)
                  (2/2/2)  (5/5/5/1)
                  (4/1/1)  (5/5/5/5)
                  (4/2/1)
                  (4/2/2)
                  (4/4/1)
                  (4/4/2)
                  (4/4/4)
(End)
		

Crossrefs

Main diagonal of A077592.
Diagonal n = k + 1 of the array A334997.
The version counting all multisets of divisors (not just chains) is A343935.
A000005 counts divisors.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A146291 counts divisors of n with k prime factors (with multiplicity).
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts nonempty strict chains of divisors of n.
A251683/A334996 count strict nonempty length-k divisor chains from n to 1.
A337255 counts strict length-k chains of divisors starting with n.
A339564 counts factorizations with a selected factor.
A343662 counts strict length-k chains of divisors (row sums: A337256).
Cf. A060690.

Programs

  • Mathematica
    Table[Times@@(Binomial[#+n-1,n-1]&/@FactorInteger[n][[All,2]]),{n,1,50}] (* Enrique Pérez Herrero, Dec 25 2013 *)
  • PARI
    {a(n,m=n)=if(n==1,1,if(m==1,1,sumdiv(n,d,a(d,1)*a(n/d,m-1))))}
    
  • Python
    from math import prod, comb
    from sympy import factorint
    def A163767(n): return prod(comb(n+e-1,e) for e in factorint(n).values()) # Chai Wah Wu, Jul 05 2024

Formula

a(p) = p for prime p.
a(n) = n^k when n is the product of k distinct primes (conjecture).
a(n) = n-th term of the n-th Dirichlet self-convolution of the all 1's sequence.
a(2^n) = A060690(n). - Alois P. Heinz, Jun 12 2024

A343658 Array read by antidiagonals where A(n,k) is the number of ways to choose a multiset of k divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 6, 2, 1, 1, 6, 5, 10, 3, 4, 1, 1, 7, 6, 15, 4, 10, 2, 1, 1, 8, 7, 21, 5, 20, 3, 4, 1, 1, 9, 8, 28, 6, 35, 4, 10, 3, 1, 1, 10, 9, 36, 7, 56, 5, 20, 6, 4, 1, 1, 11, 10, 45, 8, 84, 6, 35, 10, 10, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2021

Keywords

Comments

First differs from A343656 at A(4,2) = 6, A343656(4,2) = 5.
As a triangle, T(n,k) = number of ways to choose a multiset of n - k divisors of k.

Examples

			Array begins:
       k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
  n=1:  1   1   1   1   1   1   1   1   1
  n=2:  1   2   3   4   5   6   7   8   9
  n=3:  1   2   3   4   5   6   7   8   9
  n=4:  1   3   6  10  15  21  28  36  45
  n=5:  1   2   3   4   5   6   7   8   9
  n=6:  1   4  10  20  35  56  84 120 165
  n=7:  1   2   3   4   5   6   7   8   9
  n=8:  1   4  10  20  35  56  84 120 165
  n=9:  1   3   6  10  15  21  28  36  45
Triangle begins:
   1
   1   1
   1   2   1
   1   3   2   1
   1   4   3   3   1
   1   5   4   6   2   1
   1   6   5  10   3   4   1
   1   7   6  15   4  10   2   1
   1   8   7  21   5  20   3   4   1
   1   9   8  28   6  35   4  10   3   1
   1  10   9  36   7  56   5  20   6   4   1
   1  11  10  45   8  84   6  35  10  10   2   1
For example, row n = 6 counts the following multisets:
  {1,1,1,1,1}  {1,1,1,1}  {1,1,1}  {1,1}  {1}  {}
               {1,1,1,2}  {1,1,3}  {1,2}  {5}
               {1,1,2,2}  {1,3,3}  {1,4}
               {1,2,2,2}  {3,3,3}  {2,2}
               {2,2,2,2}           {2,4}
                                   {4,4}
Note that for n = 6, k = 4 in the triangle, the two multisets {1,4} and {2,2} represent the same divisor 4, so they are only counted once under A343656(4,2) = 5.
		

Crossrefs

Row k = 1 of the array is A000005.
Column n = 4 of the array is A000217.
Column n = 6 of the array is A000292.
Row k = 2 of the array is A184389.
The distinct products of these multisets are counted by A343656.
Antidiagonal sums of the array (or row sums of the triangle) are A343661.
A000312 = n^n.
A009998(n,k) = n^k (as an array, offset 1).
A007318 counts k-sets of elements of {1..n}.
A059481 counts k-multisets of elements of {1..n}.

Programs

  • Mathematica
    multchoo[n_,k_]:=Binomial[n+k-1,k];
    Table[multchoo[DivisorSigma[0,k],n-k],{n,10},{k,n}]
  • PARI
    A(n,k) = binomial(numdiv(n) + k - 1, k)
    { for(n=1, 9, for(k=0, 8, print1(A(n,k), ", ")); print ) } \\ Andrew Howroyd, Jan 11 2024

Formula

A(n,k) = ((A000005(n), k)) = A007318(A000005(n) + k - 1, k).
T(n,k) = ((A000005(k), n - k)) = A007318(A000005(k) + n - k - 1, n - k).

A343652 Number of maximal pairwise coprime sets of divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 10, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 12, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 10, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 25 2021

Keywords

Comments

Also the number of maximal pairwise coprime sets of divisors > 1 of n. For example, the a(n) sets for n = 12, 30, 36, 60, 120 are:
{6} {30} {6} {30} {30}
{12} {2,15} {12} {60} {60}
{2,3} {3,10} {18} {2,15} {120}
{3,4} {5,6} {36} {3,10} {2,15}
{2,3,5} {2,3} {3,20} {3,10}
{2,9} {4,15} {3,20}
{3,4} {5,6} {3,40}
{4,9} {5,12} {4,15}
{2,3,5} {5,6}
{3,4,5} {5,12}
{5,24}
{8,15}
{2,3,5}
{3,4,5}
{3,5,8}

Examples

			The a(n) sets for n = 12, 30, 36, 60, 120:
  {1,6}    {1,30}     {1,6}    {1,30}     {1,30}
  {1,12}   {1,2,15}   {1,12}   {1,60}     {1,60}
  {1,2,3}  {1,3,10}   {1,18}   {1,2,15}   {1,120}
  {1,3,4}  {1,5,6}    {1,36}   {1,3,10}   {1,2,15}
           {1,2,3,5}  {1,2,3}  {1,3,20}   {1,3,10}
                      {1,2,9}  {1,4,15}   {1,3,20}
                      {1,3,4}  {1,5,6}    {1,3,40}
                      {1,4,9}  {1,5,12}   {1,4,15}
                               {1,2,3,5}  {1,5,6}
                               {1,3,4,5}  {1,5,12}
                                          {1,5,24}
                                          {1,8,15}
                                          {1,2,3,5}
                                          {1,3,4,5}
                                          {1,3,5,8}
		

Crossrefs

The case of pairs is A063647.
The case of triples is A066620.
The non-maximal version counting empty sets and singletons is A225520.
The non-maximal version with no 1's is A343653.
The non-maximal version is A343655.
The version for subsets of {1..n} is A343659.
The case without 1's or singletons is A343660.
A018892 counts pairwise coprime unordered pairs of divisors.
A048691 counts pairwise coprime ordered pairs of divisors.
A048785 counts pairwise coprime ordered triples of divisors.
A084422, A187106, A276187, and A320426 count pairwise coprime sets.
A100565 counts pairwise coprime unordered triples of divisors.
A305713 counts pairwise coprime non-singleton strict partitions.
A324837 counts minimal subsets of {1...n} with least common multiple n.
A325683 counts maximal Golomb rulers.
A326077 counts maximal pairwise indivisible sets.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
    Table[Length[fasmax[Select[Subsets[Divisors[n]],CoprimeQ@@#&]]],{n,100}]

Formula

a(n) = A343660(n) + A005361(n).

A095149 Triangle read by rows: Aitken's array (A011971) but with a leading diagonal before it given by the Bell numbers (A000110), 1, 1, 2, 5, 15, 52, ...

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 5, 2, 3, 5, 15, 5, 7, 10, 15, 52, 15, 20, 27, 37, 52, 203, 52, 67, 87, 114, 151, 203, 877, 203, 255, 322, 409, 523, 674, 877, 4140, 877, 1080, 1335, 1657, 2066, 2589, 3263, 4140, 21147, 4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147
Offset: 0

Views

Author

Gary W. Adamson, May 30 2004

Keywords

Comments

Or, prefix Aitken's array (A011971) with a leading diagonal of 0's and take the differences of each row to get the new triangle.
With offset 1, triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} in which k is the largest entry in the block containing 1 (1 <= k <= n). - Emeric Deutsch, Oct 29 2006
Row term sums = the Bell numbers starting with A000110(1): 1, 2, 5, 15, ...
The k-th term in the n-th row is the number of permutations of length n starting with k and avoiding the dashed pattern 23-1. Equivalently, the number of permutations of length n ending with k and avoiding 1-32. - Andrew Baxter, Jun 13 2011
From Gus Wiseman, Aug 11 2020: (Start)
Conjecture: Also the number of divisors d with distinct prime multiplicities of the superprimorial A006939(n) that are of the form d = m * 2^k where m is odd. For example, row n = 4 counts the following divisors:
1 2 4 8 16
3 18 12 24 48
5 50 20 40 80
7 54 28 56 112
9 1350 108 72 144
25 540 200 400
27 756 360 432
45 504 720
63 600 1008
75 1400 1200
135 2160
175 2800
189 3024
675 10800
4725 75600
Equivalently, T(n,k) is the number of length-n vectors 0 <= v_i <= i whose nonzero values are distinct and such that v_n = k.
Crossrefs:
A008278 is the version counted by omega A001221.
A336420 is the version counted by Omega A001222.
A006939 lists superprimorials or Chernoff numbers.
A008302 counts divisors of superprimorials by Omega.
A022915 counts permutations of prime indices of superprimorials.
A098859 counts partitions with distinct multiplicities.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
(End)

Examples

			Triangle starts:
   1;
   1,  1;
   2,  1,  2;
   5,  2,  3,  5;
  15,  5,  7, 10, 15;
  52, 15, 20, 27, 37, 52;
From _Gus Wiseman_, Aug 11 2020: (Start)
Row n = 3 counts the following set partitions (described in Emeric Deutsch's comment above):
  {1}{234}      {12}{34}    {123}{4}    {1234}
  {1}{2}{34}    {12}{3}{4}  {13}{24}    {124}{3}
  {1}{23}{4}                {13}{2}{4}  {134}{2}
  {1}{24}{3}                            {14}{23}
  {1}{2}{3}{4}                          {14}{2}{3}
(End)
		

Crossrefs

Programs

  • Maple
    with(combinat): T:=proc(n,k) if k=1 then bell(n-1) elif k=2 and n>=2 then bell(n-2) elif k<=n then add(binomial(k-2,i)*bell(n-2-i),i=0..k-2) else 0 fi end: matrix(8,8,T): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
    Q[1]:=t*s: for n from 2 to 11 do Q[n]:=expand(t^n*subs(t=1,Q[n-1])+s*diff(Q[n-1],s)-Q[n-1]+s*Q[n-1]) od: for n from 1 to 11 do P[n]:=sort(subs(s=1,Q[n])) od: for n from 1 to 11 do seq(coeff(P[n],t,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Oct 29 2006
    A011971 := proc(n,k) option remember ; if k = 0 then if n=0 then 1; else A011971(n-1,n-1) ; fi ; else A011971(n,k-1)+A011971(n-1,k-1) ; fi ; end: A000110 := proc(n) option remember; if n<=1 then 1 ; else add( binomial(n-1,i)*A000110(n-1-i),i=0..n-1) ; fi ; end: A095149 := proc(n,k) option remember ; if k = 0 then A000110(n) ; else A011971(n-1,k-1) ; fi ; end: for n from 0 to 11 do for k from 0 to n do printf("%d, ",A095149(n,k)) ; od ; od ; # R. J. Mathar, Feb 05 2007
    # alternative Maple program:
    b:= proc(n, m, k) option remember; `if`(n=0, 1, add(
          b(n-1, max(j, m), max(k-1, -1)), j=`if`(k=0, m+1, 1..m+1)))
        end:
    T:= (n, k)-> b(n, 0, n-k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Dec 20 2018
  • Mathematica
    nmax = 10; t[n_, 1] = t[n_, n_] = BellB[n-1]; t[n_, 2] = BellB[n-2]; t[n_, k_] /; n >= k >= 3 := t[n, k] = t[n, k-1] + t[n-1, k-1]; Flatten[ Table[ t[n, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 15 2011, from formula with offset 1 *)
  • Python
    # requires Python 3.2 or higher.
    from itertools import accumulate
    A095149_list, blist = [1,1,1], [1]
    for _ in range(2*10**2):
        b = blist[-1]
        blist = list(accumulate([b]+blist))
        A095149_list += [blist[-1]]+ blist
    # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

With offset 1, T(n,1) = T(n,n) = T(n+1,2) = B(n-1) = A000110(n-1) (the Bell numbers). T(n,k) = T(n,k-1) + T(n-1,k-1) for n >= k >= 3. T(n,n-1) = B(n-1) - B(n-2) = A005493(n-3) for n >= 3 (B(q) are the Bell numbers A000110). T(n,k) = A011971(n-2,k-2) for n >= k >= 2. In other words, deleting the first row and first column we obtain Aitken's array A011971 (also called Bell or Pierce triangle; offset in A011971 is 0). - Emeric Deutsch, Oct 29 2006
T(n,1) = B(n-1); T(n,2) = B(n-2) for n >= 2; T(n,k) = Sum_{i=0..k-2} binomial(k-2,i)*B(n-2-i) for 3 <= k <= n, where B(q) are the Bell numbers (A000110). Generating polynomial of row n is P[n](t) = Q[n](t,1), where Q[n](t,s) = t^n*Q[n-1](1,s) + s*dQ[n-1](t,s)/ds + (s-1) Q[n-1](t,s); Q[1](t,s) = ts. - Emeric Deutsch, Oct 29 2006

Extensions

Corrected and extended by R. J. Mathar, Feb 05 2007
Entry revised by N. J. A. Sloane, Jun 01 2005, Jun 16 2007
Showing 1-10 of 23 results. Next