cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A062319 Number of divisors of n^n, or of A000312(n).

Original entry on oeis.org

1, 1, 3, 4, 9, 6, 49, 8, 25, 19, 121, 12, 325, 14, 225, 256, 65, 18, 703, 20, 861, 484, 529, 24, 1825, 51, 729, 82, 1653, 30, 29791, 32, 161, 1156, 1225, 1296, 5329, 38, 1521, 1600, 4961, 42, 79507, 44, 4005, 4186, 2209, 48, 9457, 99, 5151, 2704, 5565, 54
Offset: 0

Views

Author

Jason Earls, Jul 05 2001

Keywords

Comments

From Gus Wiseman, May 02 2021: (Start)
Conjecture: The number of divisors of n^n equals the number of pairwise coprime ordered n-tuples of divisors of n. Confirmed up to n = 30. For example, the a(1) = 1 through a(5) = 6 tuples are:
(1) (1,1) (1,1,1) (1,1,1,1) (1,1,1,1,1)
(1,2) (1,1,3) (1,1,1,2) (1,1,1,1,5)
(2,1) (1,3,1) (1,1,1,4) (1,1,1,5,1)
(3,1,1) (1,1,2,1) (1,1,5,1,1)
(1,1,4,1) (1,5,1,1,1)
(1,2,1,1) (5,1,1,1,1)
(1,4,1,1)
(2,1,1,1)
(4,1,1,1)
The unordered case (pairwise coprime n-multisets of divisors of n) is counted by A343654.
(End)

Examples

			From _Gus Wiseman_, May 02 2021: (Start)
The a(1) = 1 through a(5) = 6 divisors:
  1  1  1   1    1
     2  3   2    5
     4  9   4    25
        27  8    125
            16   625
            32   3125
            64
            128
            256
(End)
		

Crossrefs

Number of divisors of A000312(n).
Taking Omega instead of sigma gives A066959.
Positions of squares are A173339.
Diagonal n = k of the array A343656.
A000005 counts divisors.
A059481 counts k-multisets of elements of {1..n}.
A334997 counts length-k strict chains of divisors of n.
A343658 counts k-multisets of divisors.
Pairwise coprimality:
- A018892 counts coprime pairs of divisors.
- A084422 counts pairwise coprime subsets of {1..n}.
- A100565 counts pairwise coprime triples of divisors.
- A225520 counts pairwise coprime sets of divisors.
- A343652 counts maximal pairwise coprime sets of divisors.
- A343653 counts pairwise coprime non-singleton sets of divisors > 1.
- A343654 counts pairwise coprime sets of divisors > 1.

Programs

  • Magma
    [NumberOfDivisors(n^n): n in  [0..60]]; // Vincenzo Librandi, Nov 09 2014
    
  • Mathematica
    A062319[n_IntegerQ]:=DivisorSigma[0,n^n]; (* Enrique Pérez Herrero, Nov 09 2010 *)
    Join[{1},DivisorSigma[0,#^#]&/@Range[60]] (* Harvey P. Dale, Jun 06 2024 *)
  • PARI
    je=[]; for(n=0,200,je=concat(je,numdiv(n^n))); je
    
  • PARI
    { for (n=0, 1000, write("b062319.txt", n, " ", numdiv(n^n)); ) } \\ Harry J. Smith, Aug 04 2009
    
  • PARI
    a(n)=local(fm);fm=factor(n);prod(k=1,matsize(fm)[1],fm[k,2]*n+1) \\ Franklin T. Adams-Watters, May 03 2011
    
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, n^omega(d))); \\ Seiichi Manyama, May 12 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A062319(n): return prod(n*d+1 for d in factorint(n).values()) # Chai Wah Wu, Jun 03 2021

Formula

a(n) = A000005(A000312(n)). - Enrique Pérez Herrero, Nov 09 2010
a(2^n) = A002064(n). - Gus Wiseman, May 02 2021
a(prime(n)) = prime(n) + 1. - Gus Wiseman, May 02 2021
a(n) = Product_{i=1..s} (1 + n * m_i) where (m_1,...,m_s) is the sequence of prime multiplicities (prime signature) of n. - Gus Wiseman, May 02 2021
a(n) = Sum_{d|n} n^omega(d) for n > 0. - Seiichi Manyama May 12 2021

A334997 Array T read by ascending antidiagonals: T(n, k) = Sum_{d divides n} T(d, k-1) with T(n, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 3, 4, 1, 1, 2, 6, 4, 5, 1, 1, 4, 3, 10, 5, 6, 1, 1, 2, 9, 4, 15, 6, 7, 1, 1, 4, 3, 16, 5, 21, 7, 8, 1, 1, 3, 10, 4, 25, 6, 28, 8, 9, 1, 1, 4, 6, 20, 5, 36, 7, 36, 9, 10, 1, 1, 2, 9, 10, 35, 6, 49, 8, 45, 10, 11, 1, 1, 6, 3, 16, 15, 56, 7, 64, 9, 55, 11, 12, 1
Offset: 1

Views

Author

Stefano Spezia, May 19 2020

Keywords

Comments

T(n, k) is called the generalized divisor function (see Beekman).
As an array with offset n=1, k=0, T(n,k) is the number of length-k chains of divisors of n. For example, the T(4,3) = 10 chains are: 111, 211, 221, 222, 411, 421, 422, 441, 442, 444. - Gus Wiseman, Aug 04 2022

Examples

			From _Gus Wiseman_, Aug 04 2022: (Start)
Array begins:
       k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
  n=1:  1   1   1   1   1   1   1   1   1
  n=2:  1   2   3   4   5   6   7   8   9
  n=3:  1   2   3   4   5   6   7   8   9
  n=4:  1   3   6  10  15  21  28  36  45
  n=5:  1   2   3   4   5   6   7   8   9
  n=6:  1   4   9  16  25  36  49  64  81
  n=7:  1   2   3   4   5   6   7   8   9
  n=8:  1   4  10  20  35  56  84 120 165
The T(4,5) = 21 chains:
  (1,1,1,1,1)  (4,2,1,1,1)  (4,4,2,2,2)
  (2,1,1,1,1)  (4,2,2,1,1)  (4,4,4,1,1)
  (2,2,1,1,1)  (4,2,2,2,1)  (4,4,4,2,1)
  (2,2,2,1,1)  (4,2,2,2,2)  (4,4,4,2,2)
  (2,2,2,2,1)  (4,4,1,1,1)  (4,4,4,4,1)
  (2,2,2,2,2)  (4,4,2,1,1)  (4,4,4,4,2)
  (4,1,1,1,1)  (4,4,2,2,1)  (4,4,4,4,4)
The T(6,3) = 16 chains:
  (1,1,1)  (3,1,1)  (6,2,1)  (6,6,1)
  (2,1,1)  (3,3,1)  (6,2,2)  (6,6,2)
  (2,2,1)  (3,3,3)  (6,3,1)  (6,6,3)
  (2,2,2)  (6,1,1)  (6,3,3)  (6,6,6)
The triangular form T(n-k,k) gives the number of length k chains of divisors of n - k. It begins:
  1
  1  1
  1  2  1
  1  2  3  1
  1  3  3  4  1
  1  2  6  4  5  1
  1  4  3 10  5  6  1
  1  2  9  4 15  6  7  1
  1  4  3 16  5 21  7  8  1
  1  3 10  4 25  6 28  8  9  1
  1  4  6 20  5 36  7 36  9 10  1
  1  2  9 10 35  6 49  8 45 10 11  1
(End)
		

References

  • Richard Beekman, An Introduction to Number-Theoretic Combinatorics, Lulu Press 2017.

Crossrefs

Cf. A000217 (4th row), A000290 (6th row), A000292 (8th row), A000332 (16th row), A000389 (32nd row), A000537 (36th row), A000578 (30th row), A002411 (12th row), A002417 (24th row), A007318, A027800 (48th row), A335078, A335079.
Column k = 2 of the array is A007425.
Column k = 3 of the array is A007426.
Column k = 4 of the array is A061200.
The transpose of the array is A077592.
The subdiagonal n = k + 1 of the array is A163767.
The version counting all multisets of divisors (not just chains) is A343658.
The strict case is A343662 (row sums: A337256).
Diagonal n = k of the array is A343939.
Antidiagonal sums of the array (or row sums of the triangle) are A343940.
A067824(n) counts strict chains of divisors starting with n.
A074206(n) counts strict chains of divisors from n to 1.
A146291 counts divisors by Omega.
A251683(n,k) counts strict length k + 1 chains of divisors from n to 1.
A253249(n) counts nonempty chains of divisors of n.
A334996(n,k) counts strict length k chains of divisors from n to 1.
A337255(n,k) counts strict length k chains of divisors starting with n.

Programs

  • Mathematica
    T[n_,k_]:=If[n==1,1,Product[Binomial[Extract[Extract[FactorInteger[n],i],2]+k,k],{i,1,Length[FactorInteger[n]]}]]; Table[T[n-k,k],{n,1,13},{k,0,n-1}]//Flatten
  • PARI
    T(n, k) = if (k==0, 1, sumdiv(n, d, T(d, k-1)));
    matrix(10, 10, n, k, T(n, k-1)) \\ to see the array for n>=1, k >=0; \\ Michel Marcus, May 20 2020

Formula

T(n, k) = Sum_{d divides n} T(d, k-1) with T(n, 0) = 1 (see Theorem 3 in Beekman's article).
T(i*j, k) = T(i, k)*T(j, k) if i and j are coprime positive integers (see Lemma 1 in Beekman's article).
T(p^m, k) = binomial(m+k, k) for every prime p (see Lemma 2 in Beekman's article).

Extensions

Duplicate term removed by Stefano Spezia, Jun 03 2020

A077592 Table by antidiagonals of tau_k(n), the k-th Piltz function (see A007425), or n-th term of the sequence resulting from applying the inverse Möbius transform (k-1) times to the all-ones sequence.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 6, 2, 1, 1, 6, 5, 10, 3, 4, 1, 1, 7, 6, 15, 4, 9, 2, 1, 1, 8, 7, 21, 5, 16, 3, 4, 1, 1, 9, 8, 28, 6, 25, 4, 10, 3, 1, 1, 10, 9, 36, 7, 36, 5, 20, 6, 4, 1, 1, 11, 10, 45, 8, 49, 6, 35, 10, 9, 2, 1, 1, 12, 11, 55, 9, 64, 7, 56, 15, 16, 3, 6, 1
Offset: 1

Views

Author

Henry Bottomley, Nov 08 2002

Keywords

Comments

As an array with offset n=0, k=1, also the number of length n chains of divisors of k. - Gus Wiseman, Aug 04 2022

Examples

			T(6,3) = 9 because we have: 1*1*6, 1*2*3, 1*3*2, 1*6*1, 2*1*3, 2*3*1, 3*1*2, 3*2*1, 6*1*1. - _Geoffrey Critzer_, Feb 16 2015
From _Gus Wiseman_, May 03 2021: (Start)
Array begins:
       k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
  n=0:  1   1   1   1   1   1   1   1
  n=1:  1   2   2   3   2   4   2   4
  n=2:  1   3   3   6   3   9   3  10
  n=3:  1   4   4  10   4  16   4  20
  n=4:  1   5   5  15   5  25   5  35
  n=5:  1   6   6  21   6  36   6  56
  n=6:  1   7   7  28   7  49   7  84
  n=7:  1   8   8  36   8  64   8 120
  n=8:  1   9   9  45   9  81   9 165
The triangular form T(n,k) = A(n-k,k) gives the number of length n - k chains of divisors of k. It begins:
  1
  1  1
  1  2  1
  1  3  2  1
  1  4  3  3  1
  1  5  4  6  2  1
  1  6  5 10  3  4  1
  1  7  6 15  4  9  2  1
  1  8  7 21  5 16  3  4  1
  1  9  8 28  6 25  4 10  3  1
  1 10  9 36  7 36  5 20  6  4  1
  1 11 10 45  8 49  6 35 10  9  2  1
(End)
		

Crossrefs

Columns include (with multiplicity and some offsets) A000012, A000027, A000027, A000217, A000027, A000290, A000027, A000292, A000217, A000290, A000027, A002411, A000027, A000290, A000290, A000332 etc.
Cf. A077593.
Row n = 2 of the array is A007425.
Row n = 3 of the array is A007426.
Row n = 4 of the array is A061200.
The diagonal n = k of the array (central column of the triangle) is A163767.
The transpose of the array is A334997.
Diagonal n = k of the array is A343939.
Antidiagonal sums of the array (or row sums of the triangle) are A343940.
A067824(n) counts strict chains of divisors starting with n.
A074206(n) counts strict chains of divisors from n to 1.
A146291(n,k) counts divisors of n with k prime factors (with multiplicity).
A251683(n,k) counts strict length k + 1 chains of divisors from n to 1.
A253249(n) counts nonempty chains of divisors of n.
A334996(n,k) counts strict length k chains of divisors from n to 1.
A337255(n,k) counts strict length k chains of divisors starting with n.

Programs

  • Maple
    with(numtheory):
    A:= proc(n,k) option remember; `if`(k=1, 1,
          add(A(d, k-1), d=divisors(n)))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..14);  # Alois P. Heinz, Feb 25 2015
  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[tau[n - k + 1, k], {n, 14}, {k, n, 1, -1}] // Flatten (* Robert G. Wilson v *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#] + k - 1, k - 1] & /@ FactorInteger[n]); Table[tau[k, n - k + 1], {n, 1, 13}, {k, 1, n}] // Flatten (* Amiram Eldar, Sep 13 2020 *)
    Table[Length[Select[Tuples[Divisors[k],n-k],And@@Divisible@@@Partition[#,2,1]&]],{n,12},{k,1,n}] (* TRIANGLE, Gus Wiseman, May 03 2021 *)
    Table[Length[Select[Tuples[Divisors[k],n-1],And@@Divisible@@@Partition[#,2,1]&]],{n,6},{k,6}] (* ARRAY, Gus Wiseman, May 03 2021 *)

Formula

If n = Product_i p_i^e_i, then T(n,k) = Product_i C(k+e_i-1, e_i). T(n,k) = Sum_d{d|n} T(n-1,d) = A077593(n,k) - A077593(n-1,k).
Columns are multiplicative.
Dirichlet g.f. for column k: Zeta(s)^k. - Geoffrey Critzer, Feb 16 2015
A(n,k) = A334997(k,n). - Gus Wiseman, Aug 04 2022

Extensions

Typo in formula fixed by Geoffrey Critzer, Feb 16 2015

A343656 Array read by antidiagonals where A(n,k) is the number of divisors of n^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 5, 2, 1, 1, 6, 5, 7, 3, 4, 1, 1, 7, 6, 9, 4, 9, 2, 1, 1, 8, 7, 11, 5, 16, 3, 4, 1, 1, 9, 8, 13, 6, 25, 4, 7, 3, 1, 1, 10, 9, 15, 7, 36, 5, 10, 5, 4, 1, 1, 11, 10, 17, 8, 49, 6, 13, 7, 9, 2, 1, 1, 12, 11, 19, 9, 64, 7, 16, 9, 16, 3, 6, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 28 2021

Keywords

Comments

First differs from A343658 at A(4,2) = 5, A343658(4,2) = 6.
As a triangle, T(n,k) = number of divisors of k^(n-k).

Examples

			Array begins:
       k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7
  n=1:  1   1   1   1   1   1   1   1
  n=2:  1   2   3   4   5   6   7   8
  n=3:  1   2   3   4   5   6   7   8
  n=4:  1   3   5   7   9  11  13  15
  n=5:  1   2   3   4   5   6   7   8
  n=6:  1   4   9  16  25  36  49  64
  n=7:  1   2   3   4   5   6   7   8
  n=8:  1   4   7  10  13  16  19  22
  n=9:  1   3   5   7   9  11  13  15
Triangle begins:
  1
  1  1
  1  2  1
  1  3  2  1
  1  4  3  3  1
  1  5  4  5  2  1
  1  6  5  7  3  4  1
  1  7  6  9  4  9  2  1
  1  8  7 11  5 16  3  4  1
  1  9  8 13  6 25  4  7  3  1
  1 10  9 15  7 36  5 10  5  4  1
  1 11 10 17  8 49  6 13  7  9  2  1
  1 12 11 19  9 64  7 16  9 16  3  6  1
  1 13 12 21 10 81  8 19 11 25  4 15  2  1
For example, row n = 8 counts the following divisors:
  1  64  243  256  125  36  7  1
     32  81   128  25   18  1
     16  27   64   5    12
     8   9    32   1    9
     4   3    16        6
     2   1    8         4
     1        4         3
              2         2
              1         1
		

Crossrefs

Columns k=1..9 of the array give A000005, A048691, A048785, A344327, A344328, A344329, A343526, A344335, A344336.
Row n = 6 of the array is A000290.
Diagonal n = k of the array is A062319.
Array antidiagonal sums (row sums of the triangle) are A343657.
Dominated by A343658.
A000312 = n^n.
A007318 counts k-sets of elements of {1..n}.
A009998(n,k) = n^k (as an array, offset 1).
A059481 counts k-multisets of elements of {1..n}.

Programs

  • Mathematica
    Table[DivisorSigma[0,k^(n-k)],{n,10},{k,n}]
  • PARI
    A(n, k) = numdiv(n^k); \\ Seiichi Manyama, May 15 2021

Formula

A(n,k) = A000005(A009998(n,k)), where A009998(n,k) = n^k is the interpretation as an array.
A(n,k) = Sum_{d|n} k^omega(d). - Seiichi Manyama, May 15 2021

A163767 a(n) = tau_{n}(n) = number of ordered n-factorizations of n.

Original entry on oeis.org

1, 2, 3, 10, 5, 36, 7, 120, 45, 100, 11, 936, 13, 196, 225, 3876, 17, 3078, 19, 4200, 441, 484, 23, 62400, 325, 676, 3654, 11368, 29, 27000, 31, 376992, 1089, 1156, 1225, 443556, 37, 1444, 1521, 459200, 41, 74088, 43, 43560, 46575, 2116, 47, 11995200, 1225
Offset: 1

Views

Author

Paul D. Hanna, Aug 04 2009

Keywords

Comments

Also the number of length n - 1 chains of divisors of n. - Gus Wiseman, May 07 2021

Examples

			Successive Dirichlet self-convolutions of the all 1's sequence begin:
(1),1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,... (A000012)
1,(2),2,3,2,4,2,4,3,4,2,6,2,4,4,5,... (A000005)
1,3,(3),6,3,9,3,10,6,9,3,18,3,9,9,15,... (A007425)
1,4,4,(10),4,16,4,20,10,16,4,40,4,16,16,35,... (A007426)
1,5,5,15,(5),25,5,35,15,25,5,75,5,25,25,70,... (A061200)
1,6,6,21,6,(36),6,56,21,36,6,126,6,36,36,126,... (A034695)
1,7,7,28,7,49,(7),84,28,49,7,196,7,49,49,210,... (A111217)
1,8,8,36,8,64,8,(120),36,64,8,288,8,64,64,330,... (A111218)
1,9,9,45,9,81,9,165,(45),81,9,405,9,81,81,495,... (A111219)
1,10,10,55,10,100,10,220,55,(100),10,550,10,100,... (A111220)
1,11,11,66,11,121,11,286,66,121,(11),726,11,121,... (A111221)
1,12,12,78,12,144,12,364,78,144,12,(936),12,144,... (A111306)
...
where the main diagonal forms this sequence.
From _Gus Wiseman_, May 07 2021: (Start)
The a(1) = 1 through a(5) = 5 chains of divisors:
  ()  (1)  (1/1)  (1/1/1)  (1/1/1/1)
      (2)  (3/1)  (2/1/1)  (5/1/1/1)
           (3/3)  (2/2/1)  (5/5/1/1)
                  (2/2/2)  (5/5/5/1)
                  (4/1/1)  (5/5/5/5)
                  (4/2/1)
                  (4/2/2)
                  (4/4/1)
                  (4/4/2)
                  (4/4/4)
(End)
		

Crossrefs

Main diagonal of A077592.
Diagonal n = k + 1 of the array A334997.
The version counting all multisets of divisors (not just chains) is A343935.
A000005 counts divisors.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A146291 counts divisors of n with k prime factors (with multiplicity).
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts nonempty strict chains of divisors of n.
A251683/A334996 count strict nonempty length-k divisor chains from n to 1.
A337255 counts strict length-k chains of divisors starting with n.
A339564 counts factorizations with a selected factor.
A343662 counts strict length-k chains of divisors (row sums: A337256).
Cf. A060690.

Programs

  • Mathematica
    Table[Times@@(Binomial[#+n-1,n-1]&/@FactorInteger[n][[All,2]]),{n,1,50}] (* Enrique Pérez Herrero, Dec 25 2013 *)
  • PARI
    {a(n,m=n)=if(n==1,1,if(m==1,1,sumdiv(n,d,a(d,1)*a(n/d,m-1))))}
    
  • Python
    from math import prod, comb
    from sympy import factorint
    def A163767(n): return prod(comb(n+e-1,e) for e in factorint(n).values()) # Chai Wah Wu, Jul 05 2024

Formula

a(p) = p for prime p.
a(n) = n^k when n is the product of k distinct primes (conjecture).
a(n) = n-th term of the n-th Dirichlet self-convolution of the all 1's sequence.
a(2^n) = A060690(n). - Alois P. Heinz, Jun 12 2024

A343662 Irregular triangle read by rows where T(n,k) is the number of strict length k chains of divisors of n, 0 <= k <= Omega(n) + 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 4, 5, 2, 1, 2, 1, 1, 4, 6, 4, 1, 1, 3, 3, 1, 1, 4, 5, 2, 1, 2, 1, 1, 6, 12, 10, 3, 1, 2, 1, 1, 4, 5, 2, 1, 4, 5, 2, 1, 5, 10, 10, 5, 1, 1, 2, 1, 1, 6, 12, 10, 3, 1, 2, 1, 1, 6, 12, 10, 3, 1, 4, 5, 2, 1, 4, 5, 2
Offset: 1

Views

Author

Gus Wiseman, May 01 2021

Keywords

Examples

			Triangle begins:
   1:  1  1
   2:  1  2  1
   3:  1  2  1
   4:  1  3  3  1
   5:  1  2  1
   6:  1  4  5  2
   7:  1  2  1
   8:  1  4  6  4  1
   9:  1  3  3  1
  10:  1  4  5  2
  11:  1  2  1
  12:  1  6 12 10  3
  13:  1  2  1
  14:  1  4  5  2
  15:  1  4  5  2
  16:  1  5 10 10  5  1
For example, row n = 12 counts the following chains:
  ()  (1)   (2/1)   (4/2/1)   (12/4/2/1)
      (2)   (3/1)   (6/2/1)   (12/6/2/1)
      (3)   (4/1)   (6/3/1)   (12/6/3/1)
      (4)   (4/2)   (12/2/1)
      (6)   (6/1)   (12/3/1)
      (12)  (6/2)   (12/4/1)
            (6/3)   (12/4/2)
            (12/1)  (12/6/1)
            (12/2)  (12/6/2)
            (12/3)  (12/6/3)
            (12/4)
            (12/6)
		

Crossrefs

Column k = 1 is A000005.
Row ends are A008480.
Row lengths are A073093.
Column k = 2 is A238952.
The case from n to 1 is A334996 or A251683 (row sums: A074206).
A non-strict version is A334997 (transpose: A077592).
The case starting with n is A337255 (row sums: A067824).
Row sums are A337256 (nonempty: A253249).
A001055 counts factorizations.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A097805 counts compositions by sum and length.
A122651 counts strict chains of divisors summing to n.
A146291 counts divisors of n with k prime factors (with multiplicity).
A163767 counts length n - 1 chains of divisors of n.
A167865 counts strict chains of divisors > 1 summing to n.
A337070 counts strict chains of divisors starting with superprimorials.

Programs

  • Mathematica
    Table[Length[Select[Reverse/@Subsets[Divisors[n],{k}],And@@Divisible@@@Partition[#,2,1]&]],{n,15},{k,0,PrimeOmega[n]+1}]

A343657 Sum of number of divisors of x^y for each x >= 1, y >= 0, x + y = n.

Original entry on oeis.org

1, 2, 4, 7, 12, 18, 27, 39, 56, 77, 103, 134, 174, 223, 283, 356, 445, 547, 666, 802, 959, 1139, 1344, 1574, 1835, 2128, 2454, 2815, 3213, 3648, 4126, 4653, 5239, 5888, 6608, 7407, 8298, 9288, 10385, 11597, 12936, 14408, 16025, 17799, 19746, 21882, 24221
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2021

Keywords

Examples

			The a(7) = 27 divisors:
  1  32  81  64  25  6  1
     16  27  32  5   3
     8   9   16  1   2
     4   3   8       1
     2   1   4
     1       2
             1
		

Crossrefs

Antidiagonal row sums (row sums of the triangle) of A343656.
Dominated by A343661.
A000005(n) counts divisors of n.
A000312(n) = n^n.
A007318(n,k) counts k-sets of elements of {1..n}.
A009998(n,k) = n^k (as an array, offset 1).
A059481(n,k) counts k-multisets of elements of {1..n}.
A343658(n,k) counts k-multisets of divisors of n.

Programs

  • Mathematica
    Total/@Table[DivisorSigma[0,k^(n-k)],{n,30},{k,n}]

Formula

a(n) = Sum_{k=1..n} A000005(k^(n-k)).

A343935 Number of ways to choose a multiset of n divisors of n.

Original entry on oeis.org

1, 3, 4, 15, 6, 84, 8, 165, 55, 286, 12, 6188, 14, 680, 816, 4845, 18, 33649, 20, 53130, 2024, 2300, 24, 2629575, 351, 3654, 4060, 237336, 30, 10295472, 32, 435897, 7140, 7770, 8436, 177232627, 38, 10660, 11480, 62891499, 42, 85900584, 44, 1906884, 2118760
Offset: 1

Views

Author

Gus Wiseman, May 05 2021

Keywords

Examples

			The a(1) = 1 through a(5) = 6 multisets:
  {1}  {1,1}  {1,1,1}  {1,1,1,1}  {1,1,1,1,1}
       {1,2}  {1,1,3}  {1,1,1,2}  {1,1,1,1,5}
       {2,2}  {1,3,3}  {1,1,1,4}  {1,1,1,5,5}
              {3,3,3}  {1,1,2,2}  {1,1,5,5,5}
                       {1,1,2,4}  {1,5,5,5,5}
                       {1,1,4,4}  {5,5,5,5,5}
                       {1,2,2,2}
                       {1,2,2,4}
                       {1,2,4,4}
                       {1,4,4,4}
                       {2,2,2,2}
                       {2,2,2,4}
                       {2,2,4,4}
                       {2,4,4,4}
                       {4,4,4,4}
		

Crossrefs

Diagonal n = k of A343658.
Choosing n divisors of n - 1 gives A343936.
The version for chains of divisors is A343939.
A000005 counts divisors.
A000312 = n^n.
A007318 counts k-sets of elements of {1..n}.
A009998 = n^k (as an array, offset 1).
A059481 counts k-multisets of elements of {1..n}.
A146291 counts divisors of n with k prime factors (with multiplicity).
A253249 counts nonempty chains of divisors of n.
Strict chains of divisors:
- A067824 counts strict chains of divisors starting with n.
- A074206 counts strict chains of divisors from n to 1.
- A251683 counts strict length k + 1 chains of divisors from n to 1.
- A334996 counts strict length-k chains of divisors from n to 1.
- A337255 counts strict length-k chains of divisors starting with n.
- A337256 counts strict chains of divisors of n.
- A343662 counts strict length-k chains of divisors.

Programs

  • Mathematica
    multchoo[n_,k_]:=Binomial[n+k-1,k];
    Table[multchoo[DivisorSigma[0,n],n],{n,25}]
  • Python
    from math import comb
    from sympy import divisor_count
    def A343935(n): return comb(divisor_count(n)+n-1,n) # Chai Wah Wu, Jul 05 2024

Formula

a(n) = ((sigma(n), n)) = binomial(sigma(n) + n - 1, n) where sigma = A000005 and binomial = A007318.

A343661 Sum of numbers of y-multisets of divisors of x for each x >= 1, y >= 0, x + y = n.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 46, 70, 105, 155, 223, 316, 443, 619, 865, 1210, 1690, 2354, 3263, 4497, 6157, 8368, 11280, 15078, 19989, 26296, 34356, 44626, 57693, 74321, 95503, 122535, 157101, 201377, 258155, 330994, 424398, 544035, 696995, 892104, 1140298, 1455080
Offset: 1

Views

Author

Gus Wiseman, Apr 30 2021

Keywords

Examples

			The a(5) = 12 multisets of divisors:
  {1,1,1,1}  {1,1,1}  {1,1}  {1}  {}
             {1,1,2}  {1,3}  {2}
             {1,2,2}  {3,3}  {4}
             {2,2,2}
		

Crossrefs

Antidiagonal sums of the array A343658 (or row sums of the triangle).
Dominates A343657.
A000005 counts divisors.
A007318 counts k-sets of elements of {1..n}.
A059481 counts k-multisets of elements of {1..n}.
A343656 counts divisors of powers.

Programs

  • Mathematica
    multchoo[n_,k_]:=Binomial[n+k-1,k];
    Table[Sum[multchoo[DivisorSigma[0,k],n-k],{k,n}],{n,10}]

Formula

a(n) = Sum_{k=1..n} binomial(sigma(k) + n - k - 1, n - k).

A343939 Number of n-chains of divisors of n.

Original entry on oeis.org

1, 3, 4, 15, 6, 49, 8, 165, 55, 121, 12, 1183, 14, 225, 256, 4845, 18, 3610, 20, 4851, 484, 529, 24, 73125, 351, 729, 4060, 12615, 30, 29791, 32, 435897, 1156, 1225, 1296, 494209, 38, 1521, 1600, 505981, 42, 79507, 44, 46575, 49726, 2209, 48
Offset: 1

Views

Author

Gus Wiseman, May 05 2021

Keywords

Examples

			The a(1) = 1 through a(5) = 6 chains:
  (1)  (1/1)  (1/1/1)  (1/1/1/1)  (1/1/1/1/1)
       (2/1)  (3/1/1)  (2/1/1/1)  (5/1/1/1/1)
       (2/2)  (3/3/1)  (2/2/1/1)  (5/5/1/1/1)
              (3/3/3)  (2/2/2/1)  (5/5/5/1/1)
                       (2/2/2/2)  (5/5/5/5/1)
                       (4/1/1/1)  (5/5/5/5/5)
                       (4/2/1/1)
                       (4/2/2/1)
                       (4/2/2/2)
                       (4/4/1/1)
                       (4/4/2/1)
                       (4/4/2/2)
                       (4/4/4/1)
                       (4/4/4/2)
                       (4/4/4/4)
		

Crossrefs

Diagonal n = k - 1 of the array A077592.
Chains of length n - 1 are counted by A163767.
Diagonal n = k of the array A334997.
The version counting all multisets of divisors (not just chains) is A343935.
A000005(n) counts divisors of n.
A067824(n) counts strict chains of divisors starting with n.
A074206(n) counts strict chains of divisors from n to 1.
A146291(n,k) counts divisors of n with k prime factors (with multiplicity).
A251683(n,k-1) counts strict k-chains of divisors from n to 1.
A253249(n) counts nonempty chains of divisors of n.
A334996(n,k) counts strict k-chains of divisors from n to 1.
A337255(n,k) counts strict k-chains of divisors starting with n.
A343658(n,k) counts k-multisets of divisors of n.
A343662(n,k) counts strict k-chains of divisors of n (row sums: A337256).

Programs

  • Mathematica
    Table[Length[Select[Tuples[Divisors[n],n],OrderedQ[#]&&And@@Divisible@@@Reverse/@Partition[#,2,1]&]],{n,10}]
Showing 1-10 of 13 results. Next