A062319 Number of divisors of n^n, or of A000312(n).
1, 1, 3, 4, 9, 6, 49, 8, 25, 19, 121, 12, 325, 14, 225, 256, 65, 18, 703, 20, 861, 484, 529, 24, 1825, 51, 729, 82, 1653, 30, 29791, 32, 161, 1156, 1225, 1296, 5329, 38, 1521, 1600, 4961, 42, 79507, 44, 4005, 4186, 2209, 48, 9457, 99, 5151, 2704, 5565, 54
Offset: 0
Examples
From _Gus Wiseman_, May 02 2021: (Start) The a(1) = 1 through a(5) = 6 divisors: 1 1 1 1 1 2 3 2 5 4 9 4 25 27 8 125 16 625 32 3125 64 128 256 (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Harry J. Smith)
Crossrefs
Number of divisors of A000312(n).
Taking Omega instead of sigma gives A066959.
Positions of squares are A173339.
Diagonal n = k of the array A343656.
A000005 counts divisors.
A059481 counts k-multisets of elements of {1..n}.
A334997 counts length-k strict chains of divisors of n.
A343658 counts k-multisets of divisors.
Pairwise coprimality:
- A018892 counts coprime pairs of divisors.
- A084422 counts pairwise coprime subsets of {1..n}.
- A100565 counts pairwise coprime triples of divisors.
- A225520 counts pairwise coprime sets of divisors.
- A343652 counts maximal pairwise coprime sets of divisors.
- A343653 counts pairwise coprime non-singleton sets of divisors > 1.
- A343654 counts pairwise coprime sets of divisors > 1.
Programs
-
Magma
[NumberOfDivisors(n^n): n in [0..60]]; // Vincenzo Librandi, Nov 09 2014
-
Mathematica
A062319[n_IntegerQ]:=DivisorSigma[0,n^n]; (* Enrique Pérez Herrero, Nov 09 2010 *) Join[{1},DivisorSigma[0,#^#]&/@Range[60]] (* Harvey P. Dale, Jun 06 2024 *)
-
PARI
je=[]; for(n=0,200,je=concat(je,numdiv(n^n))); je
-
PARI
{ for (n=0, 1000, write("b062319.txt", n, " ", numdiv(n^n)); ) } \\ Harry J. Smith, Aug 04 2009
-
PARI
a(n)=local(fm);fm=factor(n);prod(k=1,matsize(fm)[1],fm[k,2]*n+1) \\ Franklin T. Adams-Watters, May 03 2011
-
PARI
a(n) = if(n==0, 1, sumdiv(n, d, n^omega(d))); \\ Seiichi Manyama, May 12 2021
-
Python
from math import prod from sympy import factorint def A062319(n): return prod(n*d+1 for d in factorint(n).values()) # Chai Wah Wu, Jun 03 2021
Formula
a(2^n) = A002064(n). - Gus Wiseman, May 02 2021
a(prime(n)) = prime(n) + 1. - Gus Wiseman, May 02 2021
a(n) = Product_{i=1..s} (1 + n * m_i) where (m_1,...,m_s) is the sequence of prime multiplicities (prime signature) of n. - Gus Wiseman, May 02 2021
a(n) = Sum_{d|n} n^omega(d) for n > 0. - Seiichi Manyama May 12 2021
Comments