cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A028982 Squares and twice squares.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 25, 32, 36, 49, 50, 64, 72, 81, 98, 100, 121, 128, 144, 162, 169, 196, 200, 225, 242, 256, 288, 289, 324, 338, 361, 392, 400, 441, 450, 484, 512, 529, 576, 578, 625, 648, 676, 722, 729, 784, 800, 841, 882, 900, 961, 968, 1024
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that sum of divisors of n (A000203) is odd.
Also the numbers with an odd number of run sums (trapezoidal arrangements, number of ways of being written as the difference of two triangular numbers). - Ron Knott, Jan 27 2003
Pell(n)*Sum_{k|n} 1/Pell(k) is odd, where Pell(n) is A000129(n). - Paul Barry, Oct 12 2005
Number of odd divisors of n (A001227) is odd. - Vladeta Jovovic, Aug 28 2007
A071324(a(n)) is odd. - Reinhard Zumkeller, Jul 03 2008
Sigma(a(n)) = A000203(a(n)) = A152677(n). - Jaroslav Krizek, Oct 06 2009
Numbers n such that sum of odd divisors of n (A000593) is odd. - Omar E. Pol, Jul 05 2016
A187793(a(n)) is odd. - Timothy L. Tiffin, Jul 18 2016
If k is odd (k = 2m+1 for m >= 0), then 2^k = 2^(2m+1) = 2*(2^m)^2. If k is even (k = 2m for m >= 0), then 2^k = 2^(2m) = (2^m)^2. So, the powers of 2 sequence (A000079) is a subsequence of this one. - Timothy L. Tiffin, Jul 18 2016
Numbers n such that A175317(n) = Sum_{d|n} pod(d) is odd, where pod(m) = the product of divisors of m (A007955). - Jaroslav Krizek, Dec 28 2016
Positions of zeros in A292377 and A292383, positions of ones in A286357 and A292583. (See A292583 for why.) - Antti Karttunen, Sep 25 2017
Numbers of the form A000079(i)*A016754(j), i,j>=0. - R. J. Mathar, May 30 2020
Equivalently, numbers whose odd part is square. Cf. A042968. - Peter Munn, Jul 14 2020
These are the Heinz numbers of the partitions counted by A119620. - Gus Wiseman, Oct 29 2021
Numbers m whose abundance, A033880(m), is odd. - Peter Munn, May 23 2022
Numbers with an odd number of middle divisors (cf. A067742). - Omar E. Pol, Aug 02 2022

Crossrefs

Complement of A028983.
Characteristic function is A053866, A093709.
Odd terms in A178910.
Supersequence of A000079.

Programs

  • Haskell
    import Data.List.Ordered (union)
    a028982 n = a028982_list !! (n-1)
    a028982_list = tail $ union a000290_list a001105_list
    -- Reinhard Zumkeller, Jun 27 2015
    
  • Mathematica
    Take[ Sort[ Flatten[ Table[{n^2, 2n^2}, {n, 35}] ]], 57] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    list(lim)=vecsort(concat(vector(sqrtint(lim\1),i,i^2), vector(sqrtint(lim\2),i,2*i^2))) \\ Charles R Greathouse IV, Jun 16 2011
    
  • Python
    from itertools import count, islice
    from sympy.ntheory.primetest import is_square
    def A028982_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:int(is_square(n) or is_square(n<<1)),count(max(startvalue,1)))
    A028982_list = list(islice(A028982_gen(),30)) # Chai Wah Wu, Jan 09 2023
    
  • Python
    from math import isqrt
    def A028982(n):
        def f(x): return n-1+x-isqrt(x)-isqrt(x>>1)
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 22 2024

Formula

a(n) is asymptotic to c*n^2 with c = 2/(1+sqrt(2))^2 = 0.3431457.... - Benoit Cloitre, Sep 17 2002
In particular, a(n) = c*n^2 + O(n). - Charles R Greathouse IV, Jan 11 2013
a(A003152(n)) = n^2; a(A003151(n)) = 2*n^2. - Enrique Pérez Herrero, Oct 09 2013
Sum_{n>=1} 1/a(n) = Pi^2/4. - Amiram Eldar, Jun 28 2020

A316524 Signed sum over the prime indices of n.

Original entry on oeis.org

0, 1, 2, 0, 3, -1, 4, 1, 0, -2, 5, 2, 6, -3, -1, 0, 7, 1, 8, 3, -2, -4, 9, -1, 0, -5, 2, 4, 10, 2, 11, 1, -3, -6, -1, 0, 12, -7, -4, -2, 13, 3, 14, 5, 3, -8, 15, 2, 0, 1, -5, 6, 16, -1, -2, -3, -6, -9, 17, -1, 18, -10, 4, 0, -3, 4, 19, 7, -7, 2, 20, 1, 21, -11, 2, 8, -1, 5, 22, 3, 0, -12, 23, -2, -4, -13, -8, -4, 24
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2018

Keywords

Comments

If n = prime(x_1) * prime(x_2) * prime(x_3) * ... * prime(x_k) then a(n) = x_1 - x_2 + x_3 - ... + (-1)^(k-1) x_k, where the x_i are weakly increasing positive integers.
The value of a(n) depends only on the squarefree part of n, A007913(n). - Antti Karttunen, May 06 2022

Crossrefs

Cf. A027746, A112798, A119899 (positions of negative terms).
Cf. A344616 (absolute values), A344617 (signs).

Programs

  • Mathematica
    Table[Sum[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]][[k]]*(-1)^(k-1),{k,PrimeOmega[n]}],{n,100}]
  • PARI
    a(n) = {my(f = factor(n), vp = []); for (k=1, #f~, for( j=1, f[k,2], vp = concat (vp, primepi(f[k,1])));); sum(k=1, #vp, vp[k]*(-1)^(k+1));} \\ Michel Marcus, Jul 06 2018
    
  • Python
    from sympy import factorint, primepi
    def A316524(n):
        fs = [primepi(p) for p in factorint(n,multiple=True)]
        return sum(fs[::2])-sum(fs[1::2]) # Chai Wah Wu, Aug 23 2021

Formula

a(n) = A344616(n) * A344617(n) = a(A007913(n)). - Antti Karttunen, May 06 2022

Extensions

More terms from Antti Karttunen, May 06 2022

A344616 Alternating sum of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 4, 1, 0, 2, 5, 2, 6, 3, 1, 0, 7, 1, 8, 3, 2, 4, 9, 1, 0, 5, 2, 4, 10, 2, 11, 1, 3, 6, 1, 0, 12, 7, 4, 2, 13, 3, 14, 5, 3, 8, 15, 2, 0, 1, 5, 6, 16, 1, 2, 3, 6, 9, 17, 1, 18, 10, 4, 0, 3, 4, 19, 7, 7, 2, 20, 1, 21, 11, 2, 8, 1, 5, 22, 3, 0, 12
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2021

Keywords

Comments

The alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i, which is equal to the number of odd parts in the conjugate partition.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
Also the reverse-alternating sum of the prime indices of n.

Examples

			The partition (6,4,3,2,2) has Heinz number 4095 and conjugate (5,5,3,2,1,1), so a(4095) = 5.
		

Crossrefs

Positions of nonzeros are A000037.
Positions of 0's are A000290.
The version for prime factors is A071321 (reverse: A071322).
A version for compositions is A124754.
The version for prime multiplicities is A316523.
The reverse version is A316524, with sign A344617.
A000041 counts partitions of 2n with alternating sum 0.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum.
A335433 ranks separable partitions.
A335448 ranks inseparable partitions.
A344606 counts wiggly permutations of prime indices with twins.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344612 counts partitions by sum and reverse-alternating sum.
A344618 gives reverse-alternating sums of standard compositions.

Programs

  • Maple
    a:= n-> (l-> -add(l[i]*(-1)^i, i=1..nops(l)))(sort(map(
        i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`)):
    seq(a(n), n=1..82);  # Alois P. Heinz, Jun 04 2021
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[ats[Reverse[primeMS[n]]],{n,100}]

Formula

a(n) = A257991(A122111(n)).
A057427(a(n)) = A049240(n).

A344607 Number of integer partitions of n with reverse-alternating sum >= 0.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 8, 15, 16, 27, 29, 48, 52, 81, 90, 135, 151, 220, 248, 352, 400, 553, 632, 859, 985, 1313, 1512, 1986, 2291, 2969, 3431, 4394, 5084, 6439, 7456, 9357, 10836, 13479, 15613, 19273, 22316, 27353, 31659, 38558, 44601, 53998, 62416, 75168
Offset: 0

Views

Author

Gus Wiseman, May 29 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
Also the number of reversed integer partitions of n with alternating sum >= 0.
A formula for the reverse-alternating sum of a partition is: (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts. So a(n) is the number of integer partitions of n whose conjugate parts are all even or whose length is odd. By conjugation, this is also the number of integer partitions of n whose parts are all even or whose greatest part is odd.
All integer partitions have alternating sum >= 0, so the non-reversed version is A000041.
Is this sequence weakly increasing? In particular, is A344611(n) <= A160786(n)?

Examples

			The a(1) = 1 through a(8) = 15 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (11111)  (321)     (421)      (422)
                                     (411)     (511)      (431)
                                     (2211)    (22111)    (521)
                                     (21111)   (31111)    (611)
                                     (111111)  (1111111)  (2222)
                                                          (3311)
                                                          (22211)
                                                          (32111)
                                                          (41111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The non-reversed version is A000041.
The opposite version (rev-alt sum <= 0) is A027187, ranked by A028260.
The strict case for n > 0 is A067659 (even bisection: A344650).
The ordered version appears to be A116406 (even bisection: A114121).
The odd bisection is A160786.
The complement is counted by A344608.
The Heinz numbers of these partitions are A344609 (complement: A119899).
The even bisection is A344611.
A000070 counts partitions with alternating sum 1 (reversed: A000004).
A000097 counts partitions with alternating sum 2 (reversed: A120452).
A035363 counts partitions with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum.
A316524 is the alternating sum of prime indices of n (reversed: A344616).
A325534/A325535 count separable/inseparable partitions.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344612 counts partitions by sum and reverse-alternating sum.
A344618 gives reverse-alternating sums of standard compositions.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]>=0&]],{n,0,30}]

Formula

a(n) + A344608(n) = A000041(n).
a(2n+1) = A160786(n).

A116406 Expansion of ((1 + x - 2x^2) + (1+x)*sqrt(1-4x^2))/(2(1-4x^2)).

Original entry on oeis.org

1, 1, 2, 3, 7, 11, 26, 42, 99, 163, 382, 638, 1486, 2510, 5812, 9908, 22819, 39203, 89846, 155382, 354522, 616666, 1401292, 2449868, 5546382, 9740686, 21977516, 38754732, 87167164, 154276028, 345994216, 614429672, 1374282019, 2448023843
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Interleaving of A114121 and A032443. Row sums of A116405. Binomial transform is A116409.
Appears to be the number of n-digit binary numbers not having more zeros than ones; equivalently, the number of unrestricted Dyck paths of length n not going below the axis. - Ralf Stephan, Mar 25 2008
From Gus Wiseman, Jun 20 2021: (Start)
Also the number compositions of n with alternating sum >= 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. The a(0) = 1 through a(5) = 11 compositions are:
() (1) (2) (3) (4) (5)
(11) (21) (22) (32)
(111) (31) (41)
(112) (113)
(121) (122)
(211) (212)
(1111) (221)
(311)
(1121)
(2111)
(11111)
(End)
From J. Stauduhar, Jan 14 2022: (Start)
Also, for n >= 2, first differences of partial row sums of Pascal's triangle. The first ceiling(n/2)+1 elements of rows n=0 to n=4 in Pascal's triangle are:
1
1 1
1 2
1 3 3
1 4 6
...
The cumulative sums of these partial rows form the sequence 1,3,6,13,24,..., and its first differences are a(2),a(3),a(4),... in this sequence.
(End)

Crossrefs

The alternating sum = 0 case is A001700 or A088218.
The alternating sum > 0 case appears to be A027306.
The bisections are A032443 (odd) and A114121 (even).
The alternating sum <= 0 version is A058622.
The alternating sum < 0 version is A294175.
The restriction to reversed partitions is A344607.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives the alternating sum of standard compositions.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344616 lists the alternating sums of partitions by Heinz number.

Programs

  • Mathematica
    CoefficientList[Series[((1+x-2x^2)+(1+x)Sqrt[1-4x^2])/(2(1-4x^2)),{x,0,40}],x] (* Harvey P. Dale, Aug 16 2012 *)
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],ats[#]>=0&]],{n,0,15}] (* Gus Wiseman, Jun 20 2021 *)

Formula

a(n) = A114121(n/2)*(1+(-1)^n)/2 + A032443((n-1)/2)*(1-(-1)^n)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-1,k). - Paul Barry, Oct 06 2007
Conjecture: n*(n-3)*a(n) +2*(-n^2+4*n-2)*a(n-1) -4*(n-2)^2*a(n-2) +8*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Nov 28 2014
a(n) ~ 2^(n-2) * (1 + (3+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, May 30 2016
a(n) = 2^(n-1) - A294175(n). - Gus Wiseman, Jun 27 2021

A344651 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with alternating sum k, with k ranging from n mod 2 to n in steps of 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 1, 4, 2, 1, 3, 5, 2, 1, 7, 5, 2, 1, 5, 9, 5, 2, 1, 12, 10, 5, 2, 1, 7, 17, 10, 5, 2, 1, 19, 19, 10, 5, 2, 1, 11, 28, 20, 10, 5, 2, 1, 30, 33, 20, 10, 5, 2, 1, 15, 47, 35, 20, 10, 5, 2, 1, 45, 57, 36, 20, 10, 5, 2, 1, 22, 73, 62, 36, 20, 10, 5, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2021

Keywords

Comments

The alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. This is equal to the number of odd parts in the conjugate partition, so T(n,k) is the number of integer partitions of n with k odd parts in the conjugate partition, which is also the number of partitions of n with k odd parts.
Also the number of integer partitions of n with odd-indexed parts (odd bisection) summing to k, ceiling(n/2) <= k <= n. The even-indexed version is A346633. - Gus Wiseman, Nov 29 2021

Examples

			Triangle begins:
   1
   1
   1   1
   2   1
   2   2   1
   4   2   1
   3   5   2   1
   7   5   2   1
   5   9   5   2   1
  12  10   5   2   1
   7  17  10   5   2   1
  19  19  10   5   2   1
  11  28  20  10   5   2   1
  30  33  20  10   5   2   1
  15  47  35  20  10   5   2   1
  45  57  36  20  10   5   2   1
  22  73  62  36  20  10   5   2   1
  67  92  64  36  20  10   5   2   1
  30 114 102  65  36  20  10   5   2   1
  97 147 107  65  36  20  10   5   2   1
Row n = 10 counts the following partitions (A = 10):
  (55)          (64)         (73)       (82)     (91)   (A)
  (3322)        (442)        (433)      (622)    (811)
  (4411)        (541)        (532)      (721)
  (222211)      (3331)       (631)      (7111)
  (331111)      (4222)       (5221)     (61111)
  (22111111)    (4321)       (6211)
  (1111111111)  (5311)       (42211)
                (22222)      (52111)
                (32221)      (511111)
                (33211)      (4111111)
                (43111)
                (322111)
                (421111)
                (2221111)
                (3211111)
                (31111111)
                (211111111)
The conjugate version is:
  (A)      (55)      (3331)     (331111)    (31111111)   (1111111111)
  (64)     (73)      (5311)     (511111)    (211111111)
  (82)     (91)      (7111)     (3211111)
  (442)    (433)     (33211)    (4111111)
  (622)    (532)     (43111)    (22111111)
  (4222)   (541)     (52111)
  (22222)  (631)     (61111)
           (721)     (322111)
           (811)     (421111)
           (3322)    (2221111)
           (4321)
           (4411)
           (5221)
           (6211)
           (32221)
           (42211)
           (222211)
		

Crossrefs

This is A103919 with all zeros removed.
The strict version is A152146 interleaved with A152157.
The rows are those of A239830 interleaved with those of A239829.
The reverse version is the right half of A344612.
The strict reverse version is the right half of A344739.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A027187 counts partitions with rev-alternating sum <= 0, ranked by A028260.
A124754 lists alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344607 counts partitions with rev-alternating sum >= 0, ranked by A344609.
A344608 counts partitions with rev-alternating sum < 0, ranked by A119899.
A344610 counts partitions of n by positive rev-alternating sum.
A344611 counts partitions of 2n with rev-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
A346697 gives the sum of odd-indexed prime indices (reverse: A346699).
A346702 represents the odd bisection of compositions, sums A209281.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],ats[#]==k&]],{n,0,15},{k,Mod[n,2],n,2}]

A344618 Reverse-alternating sums of standard compositions (A066099). Alternating sums of the compositions ranked by A228351.

Original entry on oeis.org

0, 1, 2, 0, 3, -1, 1, 1, 4, -2, 0, 2, 2, 0, 2, 0, 5, -3, -1, 3, 1, 1, 3, -1, 3, -1, 1, 1, 3, -1, 1, 1, 6, -4, -2, 4, 0, 2, 4, -2, 2, 0, 2, 0, 4, -2, 0, 2, 4, -2, 0, 2, 2, 0, 2, 0, 4, -2, 0, 2, 2, 0, 2, 0, 7, -5, -3, 5, -1, 3, 5, -3, 1, 1, 3, -1, 5, -3, -1, 3
Offset: 0

Views

Author

Gus Wiseman, Jun 03 2021

Keywords

Comments

Up to sign, same as A124754.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of nonnegative integers together with the corresponding standard compositions and their reverse-alternating sums begins:
  0:     () ->  0    15: (1111) ->  0    30:  (1112) ->  1
  1:    (1) ->  1    16:    (5) ->  5    31: (11111) ->  1
  2:    (2) ->  2    17:   (41) -> -3    32:     (6) ->  6
  3:   (11) ->  0    18:   (32) -> -1    33:    (51) -> -4
  4:    (3) ->  3    19:  (311) ->  3    34:    (42) -> -2
  5:   (21) -> -1    20:   (23) ->  1    35:   (411) ->  4
  6:   (12) ->  1    21:  (221) ->  1    36:    (33) ->  0
  7:  (111) ->  1    22:  (212) ->  3    37:   (321) ->  2
  8:    (4) ->  4    23: (2111) -> -1    38:   (312) ->  4
  9:   (31) -> -2    24:   (14) ->  3    39:  (3111) -> -2
  10:  (22) ->  0    25:  (131) -> -1    40:    (24) ->  2
  11: (211) ->  2    26:  (122) ->  1    41:   (231) ->  0
  12:  (13) ->  2    27: (1211) ->  1    42:   (222) ->  2
  13: (121) ->  0    28:  (113) ->  3    43:  (2211) ->  0
  14: (112) ->  2    29: (1121) -> -1    44:   (213) ->  4
Triangle begins (row lengths A011782):
  0
  1
  2  0
  3 -1  1  1
  4 -2  0  2  2  0  2  0
  5 -3 -1  3  1  1  3 -1  3 -1  1  1  3 -1  1  1
		

Crossrefs

Up to sign, same as the reverse version A124754.
The version for Heinz numbers of partitions is A344616.
Positions of zeros are A344619.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A116406 counts compositions with alternating sum >= 0.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
All of the following pertain to compositions in standard order:
- The length is A000120.
- Converting to reversed ranking gives A059893.
- The rows are A066099.
- The sum is A070939.
- The runs are counted by A124767.
- The reversed version is A228351.
- Strict compositions are ranked by A233564.
- Constant compositions are ranked by A272919.
- The Heinz number is A333219.
- Anti-run compositions are ranked by A333489.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]]
    Table[sats[stc[n]],{n,0,100}]

A344619 The a(n)-th composition in standard order (A066099) has alternating sum 0.

Original entry on oeis.org

0, 3, 10, 13, 15, 36, 41, 43, 46, 50, 53, 55, 58, 61, 63, 136, 145, 147, 150, 156, 162, 165, 167, 170, 173, 175, 180, 185, 187, 190, 196, 201, 203, 206, 210, 213, 215, 218, 221, 223, 228, 233, 235, 238, 242, 245, 247, 250, 253, 255, 528, 545, 547, 550, 556, 568
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
    0: ()
    3: (1,1)
   10: (2,2)
   13: (1,2,1)
   15: (1,1,1,1)
   36: (3,3)
   41: (2,3,1)
   43: (2,2,1,1)
   46: (2,1,1,2)
   50: (1,3,2)
   53: (1,2,2,1)
   55: (1,2,1,1,1)
   58: (1,1,2,2)
   61: (1,1,1,2,1)
   63: (1,1,1,1,1,1)
  136: (4,4)
  145: (3,4,1)
  147: (3,3,1,1)
  150: (3,2,1,2)
  156: (3,1,1,3)
		

Crossrefs

The version for Heinz numbers of partitions is A000290, counted by A000041.
These are the positions of zeros in A344618.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A116406 counts compositions with alternating sum >= 0.
A124754 gives the alternating sum of standard compositions.
A316524 is the alternating sum of the prime indices of n.
A344604 counts wiggly compositions with twins.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A344616 gives the alternating sum of reversed prime indices.
All of the following pertain to compositions in standard order:
- The length is A000120.
- Converting to reversed ranking gives A059893.
- The rows are A066099.
- The sum is A070939.
- The runs are counted by A124767.
- The reversed version is A228351.
- Strict compositions are ranked by A233564.
- Constant compositions are ranked by A272919.
- The Heinz number is A333219.
- Anti-run compositions are ranked by A333489.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]]
    Select[Range[0,100],ats[stc[#]]==0&]

A344611 Number of integer partitions of 2n with reverse-alternating sum >= 0.

Original entry on oeis.org

1, 2, 4, 8, 15, 27, 48, 81, 135, 220, 352, 553, 859, 1313, 1986, 2969, 4394, 6439, 9357, 13479, 19273, 27353, 38558, 53998, 75168, 104022, 143172, 196021, 267051, 362086, 488733, 656802, 879026, 1171747, 1555997, 2058663, 2714133, 3566122, 4670256, 6096924, 7935184
Offset: 0

Views

Author

Gus Wiseman, May 30 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
Also the number of reversed integer partitions of 2n with alternating sum >= 0.
The reverse-alternating sum of a partition is equal to (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts. So a(n) is the number of partitions of 2n whose conjugate parts are all even or whose length is odd. By conjugation, this is also the number of partitions of 2n whose parts are all even or whose greatest part is odd.

Examples

			The a(0) = 1 through a(4) = 15 partitions:
  ()  (2)   (4)     (6)       (8)
      (11)  (22)    (33)      (44)
            (211)   (222)     (332)
            (1111)  (321)     (422)
                    (411)     (431)
                    (2211)    (521)
                    (21111)   (611)
                    (111111)  (2222)
                              (3311)
                              (22211)
                              (32111)
                              (41111)
                              (221111)
                              (2111111)
                              (11111111)
		

Crossrefs

The non-reversed version is A058696 (partitions of 2n).
The ordered version appears to be A114121.
Odd bisection of A344607.
Row sums of A344610.
The strict case is A344650.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A000070 counts partitions with alternating sum 1.
A000097 counts partitions with alternating sum 2.
A103919 counts partitions by sum and alternating sum.
A120452 counts partitions of 2n with reverse-alternating sum 2.
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344612 counts partitions by sum and rev-alt sum (strict: A344739).
A344618 gives reverse-alternating sums of standard compositions.
A344741 counts partitions of 2n with reverse-alternating sum -2.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]>=0&]],{n,0,30,2}]

Formula

Conjecture: a(n) <= A160786(n). The difference is 0, 0, 0, 0, 1, 2, 4, 9, 16, 28, 48, 79, ...

Extensions

More terms from Bert Dobbelaere, Jun 12 2021

A120452 Number of partitions of n-1 boys and one girl with no couple.

Original entry on oeis.org

1, 1, 3, 5, 9, 14, 23, 34, 52, 75, 109, 153, 216, 296, 407, 549, 739, 981, 1300, 1702, 2224, 2879, 3716, 4761, 6083, 7721, 9774, 12306, 15450, 19307, 24064, 29867, 36978, 45614, 56130, 68846, 84250, 102793, 125148, 151955, 184123, 222553, 268482
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jul 20 2006

Keywords

Comments

From Gus Wiseman, Jun 08 2021: (Start)
Also the number of:
- integer partitions of 2n with reverse-alternating sum 2;
- reversed integer partitions of 2n with alternating sum 2;
- integer partitions of 2n with exactly two odd parts, one of which is the greatest;
- odd-length integer partitions of 2n whose conjugate partition has exactly two odd parts.
Note that integer partitions of 2n with alternating or reverse-alternating sum 0 are counted by A000041, ranked by A000290.
(End)

Examples

			n=5:
If partitions have no pair "o*", then a(5)=9 ("o" means a boy, "*" means a girl): {o, o, o, o, *}, {o, o, *, oo}, {*, oo, oo}, {o, *, ooo}, {o, o, oo*}, {oo, oo*}, {*, oooo}, {o, ooo*}, {oooo*}.
From _Gus Wiseman_, Jun 08 2021: (Start)
The a(1) = 1 through a(6) = 14 partitions of 2n with reverse-alternating sum 2:
  (2)  (211)  (222)    (332)      (442)        (552)
              (321)    (431)      (541)        (651)
              (21111)  (22211)    (22222)      (33222)
                       (32111)    (32221)      (33321)
                       (2111111)  (33211)      (43221)
                                  (43111)      (44211)
                                  (2221111)    (54111)
                                  (3211111)    (2222211)
                                  (211111111)  (3222111)
                                               (3321111)
                                               (4311111)
                                               (222111111)
                                               (321111111)
                                               (21111111111)
For example, the partition (43221) has reverse-alternating sum 1 - 2 + 2 - 3 + 4 = 2, so is counted under a(6).
The a(1) = 1 through a(6) = 14 partitions of 2n with exactly two odd parts, one of which is the greatest:
  (11)  (31)  (33)   (53)    (55)     (75)
              (51)   (71)    (73)     (93)
              (321)  (332)   (91)     (111)
                     (521)   (532)    (543)
                     (3221)  (541)    (552)
                             (721)    (732)
                             (3322)   (741)
                             (5221)   (921)
                             (32221)  (5322)
                                      (5421)
                                      (7221)
                                      (33222)
                                      (52221)
                                      (322221)
(End)
		

Crossrefs

A diagonal of A103919.
A diagonal of A344612.
A000097 counts partitions of 2n with alternating sum 2.
A001700/A088218 appear to count compositions with reverse-alternating sum 2.
A058696 counts partitions of 2n, ranked by A300061.
A344610 counts partitions of 2n by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A344741 counts partitions of 2n with reverse-alternating sum -2.

Programs

  • Mathematica
    a[n_] := Total[PartitionsP[Range[0, n-3]]] + PartitionsP[n-1];
    Array[a, 50] (* Jean-François Alcover, Jun 05 2021 *)

Formula

a(n) = A000070(n-2) + A002865(n-1). - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 15 2006
a(n) = A000070(n-1) - A000041(n-2) = A000070(n-3) + A000041(n-1). - Max Alekseyev, Aug 23 2006
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)) * (1 - 37*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Oct 25 2016

Extensions

More terms from Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 15 2006
More terms from Max Alekseyev, Aug 23 2006
Showing 1-10 of 32 results. Next