A344612 Triangle read by rows where T(n,k) is the number of integer partitions of n with reverse-alternating sum k ranging from -n to n in steps of 2.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 2, 3, 3, 1, 1, 0, 1, 2, 4, 3, 3, 1, 1, 0, 1, 2, 4, 5, 5, 3, 1, 1, 0, 1, 2, 4, 7, 5, 6, 3, 1, 1, 0, 1, 2, 4, 8, 7, 9, 6, 3, 1, 1, 0, 1, 2, 4, 8, 12, 7, 11, 6, 3, 1, 1, 0, 1, 2, 4, 8, 14, 11, 14, 12, 6, 3, 1, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 1 1 1 0 1 2 1 1 0 1 2 2 1 1 0 1 2 3 3 1 1 0 1 2 4 3 3 1 1 0 1 2 4 5 5 3 1 1 0 1 2 4 7 5 6 3 1 1 0 1 2 4 8 7 9 6 3 1 1 0 1 2 4 8 12 7 11 6 3 1 1 0 1 2 4 8 14 11 14 12 6 3 1 1 0 1 2 4 8 15 19 11 18 12 6 3 1 1 0 1 2 4 8 15 24 15 23 20 12 6 3 1 1 0 1 2 4 8 15 26 30 15 31 21 12 6 3 1 1 For example, row n = 7 counts the following partitions: (61) (52) (43) (331) (322) (511) (7) (4111) (2221) (22111) (421) (3211) (1111111) (31111) (211111) Row n = 9 counts the following partitions: 81 72 63 54 441 333 522 711 9 6111 4221 3222 22221 432 621 5211 3321 33111 531 51111 411111 4311 2211111 32211 222111 111111111 42111 321111 3111111 21111111
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Crossrefs
Programs
-
Mathematica
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; Table[Length[Select[IntegerPartitions[n],sats[#]==k&]],{n,0,15},{k,-n,n,2}]
-
PARI
row(n)={my(v=vector(n+1)); forpart(p=n, my(s=-sum(i=1, #p, p[i]*(-1)^i)); v[(s+n)/2+1]++); v} \\ Andrew Howroyd, Jan 06 2024
Comments