A297622 Triangle read by rows: a(n,k) is the number of k X n matrices which are the first k rows of an alternating sign matrix of size n.
1, 1, 1, 1, 2, 2, 1, 3, 7, 7, 1, 4, 16, 42, 42, 1, 5, 30, 149, 429, 429, 1, 6, 50, 406, 2394, 7436, 7436, 1, 7, 77, 938, 9698, 65910, 218348, 218348, 1, 8, 112, 1932, 31920, 403572, 3096496, 10850216, 10850216, 1, 9, 156, 3654, 90576, 1931325, 29020904, 247587252, 911835460, 911835460
Offset: 0
Examples
a(3,3)=7 because there are seven alternating sign matrices of size 3. Six of these are the permutation matrices, and the seventh is the matrix ((0,1,0),(1,-1,1),(0,1,0)). a(n,0)=1 because there is only one possible n X 0 matrix: the empty matrix. a(4,4)=42 because there are 42 4 X 4 alternating sign matrices. If we look only at the first two rows in each of the 42 4 X 4 alternating sign matrices, we get 16 distinct 2 X 4 matrices, and so a(4,2)=16. The 16 2 X 4 matrices are {{0, 0, 0, 1}, {0, 0, 1, 0}}, {{0, 0, 0, 1}, {0, 1, 0, 0}}, {{0, 0, 0, 1}, {1, 0, 0, 0}}, {{0, 0, 1, 0}, {0, 0, 0, 1}}, {{0, 0, 1, 0}, {0, 1, 0, 0}}, {{0, 0, 1, 0}, {1, 0, 0, 0}}, {{0, 1, 0, 0}, {0, 0, 0, 1}}, {{0, 1, 0, 0}, {0, 0, 1, 0}}, {{0, 1, 0, 0}, {1, 0, 0, 0}}, {{1, 0, 0, 0}, {0, 0, 0, 1}}, {{1, 0, 0, 0}, {0, 0, 1, 0}}, {{1, 0, 0, 0}, {0, 1, 0, 0}}, {{0, 0, 1, 0}, {0, 1, -1, 1}}, {{0, 0, 1, 0}, {1, 0, -1, 1}}, {{0, 1, 0, 0}, {1, -1, 0, 1}}, {{0, 1, 0, 0}, {1, -1, 1, 0}}. Triangle begins: ============================================================================================= n\k| 0 1 2 3 4 5 6 7 8 9 10 ---|----------------------------------------------------------------------------------------- _0 | 1 _1 | 1 1 _2 | 1 2 2 _3 | 1 3 7 7 _4 | 1 4 16 42 42 _5 | 1 5 30 149 429 429 _6 | 1 6 50 406 2394 7436 7436 _7 | 1 7 77 938 9698 65910 218348 218348 _8 | 1 8 112 1932 31920 403572 3096496 10850216 10850216 _9 | 1 9 156 3654 90576 1931325 29020904 247587252 911835460 911835460 10 | 1 10 210 6468 229680 7722110 205140540 3586953760 33631201864 129534272700 129534272700 ...
References
- D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..104
- Sara Billey and Matjaž Konvalinka, Generalized rank functions and quilts of alternating sign matrices, arXiv:2412.03236 [math.CO], 2024. See p. 33.
- Paul Terwilliger, A Poset Phi_n whose maximal chains are in bijection with the n by n alternating sign matrices, arXiv:1710.04733 [math.CO], 2017.
Crossrefs
Cf. A005130.
Programs
-
Mathematica
(* First we compute the Hasse diagram for Terwilliger's poset as a directed graph object. *) ToAlternatingSignList[list_] := Module[{s = 1}, Table[If[list[[k]] == 0, 0, (s = -s); -s], {k, 1, Length[list]}]] AllAlternatingSignRows[n_] := AllAlternatingSignRows[ n] = (ToAlternatingSignList /@ Select[Table[IntegerDigits[q, 2, n], {q, 0, 2^n - 1}], OddQ[Total[#]] &]) output[vertex_] := Select[Table[ vertex + li, {li, AllAlternatingSignRows[Length[vertex]]}], And[Min[#] >= 0, Max[#] <= 1] &] elist[vertex_] := ((vertex \[DirectedEdge] #) & /@ output[vertex]) ASMPoset[n_] := ASMPoset[n] = Graph[Flatten[ Table[elist[IntegerDigits[k, 2, n]], {k, 0, 2^n - 1}]]] (*Now we compute the number of paths of length k starting at the root vertex.*) ASMPosetAdjacencyMatrix[n_] := Normal[AdjacencyMatrix[ASMPoset[n]]] Table[Total /@ First /@ NestList[ASMPosetAdjacencyMatrix[n].# &, IdentityMatrix[2^n], n], {n, 1, 10}]
Comments