cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A380146 Numbers that set records in A113901.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 30, 48, 60, 120, 210, 240, 420, 480, 840, 1680, 3360, 6720, 13440, 26880, 36960, 53760, 73920, 107520, 147840, 215040, 295680, 591360, 960960, 1182720, 1921920, 2365440, 3843840, 4730880, 7687680, 9461760, 15375360, 30750720, 61501440, 123002880
Offset: 1

Views

Author

Hal M. Switkay, Jan 13 2025

Keywords

Comments

All terms in this sequence are numbers of least prime signature (A025487). Therefore it is easier to search for new terms in the product of A061394 (omega of least prime signature) and A036041 (bigomega of least prime signature). Similar to but ultimately different from A378630. Terms appear to be products of primorials (A002110) with powers of 2 (A000079), and thus are never divisible by the square of an odd prime.

Examples

			omega(60) = 3 and bigomega(60) = 4; their product is 12. This product is larger than that for any smaller natural number, so 60 is a term of this sequence.
		

Crossrefs

A307409 a(n) = (A001222(n) - 1)*A001221(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 2, 1, 2, 0, 4, 0, 2, 2, 3, 0, 4, 0, 4, 2, 2, 0, 6, 1, 2, 2, 4, 0, 6, 0, 4, 2, 2, 2, 6, 0, 2, 2, 6, 0, 6, 0, 4, 4, 2, 0, 8, 1, 4, 2, 4, 0, 6, 2, 6, 2, 2, 0, 9, 0, 2, 4, 5, 2, 6, 0, 4, 2, 6, 0, 8, 0, 2, 4, 4, 2, 6, 0, 8, 3, 2, 0, 9, 2, 2, 2, 6, 0, 9, 2, 4, 2, 2, 2, 10, 0, 4, 4, 6, 0, 6, 0, 6
Offset: 1

Views

Author

Mats Granvik, Apr 07 2019

Keywords

Comments

a(n) + 2 appears to differ from A000005 at n=1 and when n is a term of A320632. Verified up to n=3000.
If A320632 contains the numbers such that A001222(n) - A051903(n) > 1, then this sequence contains precisely the numbers p^k and p^k*q for distinct primes p and q. The comment follows, since d(p^k) = k+1 = (k-1)*1 + 2 and d(p^k*q) = 2k+2 = ((k+1)-1)*2 + 2. - Charlie Neder, May 14 2019
Positions of first appearances are A328965. - Gus Wiseman, Nov 05 2019
Regarding Neder's comment above, see also my comments in A322437. - Antti Karttunen, Feb 17 2021

Crossrefs

Two less than A307408.
A113901(n) is bigomega(n) * omega(n).
A328958(n) is sigma_0(n) - bigomega(n) * omega(n).

Programs

  • Mathematica
    a[n_] := (PrimeOmega[n] - 1)*PrimeNu[n];
    aa = Table[a[n], {n, 1, 104}];
  • PARI
    a(n) = (bigomega(n) - 1)*omega(n); \\ Michel Marcus, May 15 2019

Formula

a(n) = (A001222(n) - 1)*A001221(n).
a(n) = binomial(A001222(n) - 1, 1)*binomial(A001221(n), 1).
a(n) = A307408(n) - 2.

A320632 Numbers k such that there exists a pair of factorizations of k into factors > 1 where no factor of one divides any factor of the other.

Original entry on oeis.org

36, 60, 72, 84, 90, 100, 108, 120, 126, 132, 140, 144, 150, 156, 168, 180, 196, 198, 200, 204, 210, 216, 220, 225, 228, 234, 240, 252, 260, 264, 270, 276, 280, 288, 294, 300, 306, 308, 312, 315, 324, 330, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 390
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

Positions of nonzero terms in A322437 or A322438.
Mats Granvik has conjectured that these are all the positive integers k such that sigma_0(k) - 2 > (bigomega(k) - 1) * omega(k), where sigma_0 = A000005, omega = A001221, and bigomega = A001222. - Gus Wiseman, Nov 12 2019
Numbers with more semiprime divisors than prime divisors. - Wesley Ivan Hurt, Jun 10 2021

Examples

			An example of such a pair for 36 is (4*9)|(6*6).
		

Crossrefs

The following are additional cross-references relating to Granvik's conjecture.
bigomega(n) * omega(n) is A113901(n).
(bigomega(n) - 1) * omega(n) is A307409(n).
sigma_0(n) - bigomega(n) * omega(n) is A328958(n).
sigma_0(n) - 2 - (omega(n) - 1) * nu(n) is A328959(n).

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[Subsets[facs[#],{2}],And[!Or@@Divisible@@@Tuples[#],!Or@@Divisible@@@Reverse/@Tuples[#]]&]!={}&]
  • PARI
    factorizations(n, m=n, f=List([]), z=List([])) = if(1==n, listput(z,Vec(f)); z, my(newf); fordiv(n, d, if((d>1)&&(d<=m), newf = List(f); listput(newf,d); z = factorizations(n/d, d, newf, z))); (z));
    is_ndf_pair(fac1,fac2) = { for(i=1,#fac1,for(j=1,#fac2,if(!(fac1[i]%fac2[j])||!(fac2[j]%fac1[i]),return(0)))); (1); };
    has_at_least_one_ndfpair(z) = { for(i=1,#z,for(j=i+1,#z,if(is_ndf_pair(z[i],z[j]),return(1)))); (0); };
    isA320632(n) = has_at_least_one_ndfpair(Vec(factorizations(n))); \\ Antti Karttunen, Dec 10 2020

A328956 Numbers k such that sigma_0(k) = omega(k) * Omega(k), where sigma_0 = A000005, omega = A001221, Omega = A001222.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 68, 69, 74, 75, 76, 77, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 104, 106, 111, 112, 115, 116, 117
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2019

Keywords

Comments

First differs from A084227 in having 60.

Examples

			The sequence of terms together with their prime indices begins:
   6: {1,2}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  18: {1,2,2}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  26: {1,6}
  28: {1,1,4}
  33: {2,5}
  34: {1,7}
  35: {3,4}
  38: {1,8}
  39: {2,6}
  40: {1,1,1,3}
  44: {1,1,5}
  45: {2,2,3}
		

Crossrefs

Zeros of A328958.
The complement is A328957.
Prime signature is A124010.
Omega-sequence is A323023.
omega(n) * Omega(n) is A113901(n).
(Omega(n) - 1) * omega(n) is A307409(n).
sigma_0(n) - omega(n) * Omega(n) is A328958(n).
sigma_0(n) - 2 - (Omega(n) - 1) * omega(n) is A328959(n).

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]==PrimeOmega[#]*PrimeNu[#]&]
  • PARI
    is(k) = {my(f = factor(k)); numdiv(f) == omega(f) * bigomega(f);} \\ Amiram Eldar, Jul 28 2024

Formula

A000005(a(n)) = A001222(a(n)) * A001221(a(n)).

A328958 a(n) = d(n) - (omega(n) * bigomega(n)), where d (number of divisors) = A000005, omega = A001221, bigomega = A001222.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, -1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, -1, 1, 0, 0, -1, 1, 2, 1, 0, 0, 0, 0, -1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, -1, 1, 0, -1
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2019

Keywords

Comments

a(n) = sigma_0(n) - omega(n) * nu(n), where sigma_0 = A000005, nu = A001221, omega = A001222. - The original name of the sequence.

Examples

			a(144) = sigma_0(144) - omega(144) * nu(144) = 15 - 6 * 2 = 3.
		

Crossrefs

Positions of first appearances are A328962.
Zeros are A328956.
Nonzeros are A328957.
omega(n) * nu(n) is A113901(n).
(omega(n) - 1) * nu(n) is A307409(n).
sigma_0(n) - 2 - (omega(n) - 1) * nu(n) is A328959(n).

Programs

  • Mathematica
    Table[DivisorSigma[0,n]-PrimeOmega[n]*PrimeNu[n],{n,100}]
  • PARI
    A328958(n) = (numdiv(n)-(omega(n)*bigomega(n))); \\ Antti Karttunen, Jan 27 2025

Formula

a(n) = A000005(n) - A001222(n) * A001221(n) = A000005(n) - A113901(n).

Extensions

More terms added and the function names in the definition replaced with standard OEIS ones - Antti Karttunen, Jan 27 2025

A328959 a(n) = sigma_0(n) - 2 - (omega(n) - 1) * nu(n), where sigma_0 = A000005, nu = A001221, omega = A001222.

Original entry on oeis.org

-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2019. The idea for this sequence came from Mats Granvik

Keywords

Comments

Conjecture: All terms are nonnegative except for a(1) = -1.

Examples

			a(72) = sigma_0(72) - 2 - (omega(72) - 1) * nu(72) = 12 - 2 - (5 - 1) * 2 = 2.
		

Crossrefs

The positions of positive terms are conjectured to be A320632.
Positions of first appearances are A328963.
omega(n) * nu(n) is A113901(n).
(omega(n) - 1) * nu(n) is A307409.
sigma_0(n) - omega(n) * nu(n) is A328958(n).

Programs

  • Mathematica
    Table[DivisorSigma[0,n]-2-(PrimeOmega[n]-1)*PrimeNu[n],{n,100}]
  • PARI
    A307408(n) = 2+((bigomega(n)-1)*omega(n));
    A328959(n) = (numdiv(n) - A307408(n)); \\ Antti Karttunen, Nov 17 2019

Formula

a(n) = A000005(n) - A307408(n). - Antti Karttunen, Nov 17 2019

A328963 Smallest k such that n = sigma_0(k) - ((bigomega(k)-1)*omega(k)), where sigma_0 = A000005, omega = A001221, bigomega = A001222.

Original entry on oeis.org

1, 2, 36, 72, 144, 180, 576, 420, 360, 864, 1296, 720, 36864, 1080, 1440, 1260, 5184, 1800, 2160, 3360, 5760, 15552, 4620, 2520, 150994944, 6480, 5400, 13440, 8640, 6300, 9663676416, 5040, 12960, 9240, 331776, 7560, 186624, 248832, 34560, 10080, 1327104, 13860
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2019

Keywords

Comments

a(n) = smallest k for which A328959(k) = n-2. a(31) > 2^28. - Antti Karttunen, Nov 17 2019
a(n) <= 2^(n-1)*3^2, with equality for n = 3, 4, 5, 7, 13, 25, 31, 43,... . - Giovanni Resta, Nov 18 2019

Examples

			The sequence of terms together with their prime signatures begins:
        1: ()
        2: (1)
       36: (2,2)
       72: (3,2)
      144: (4,2)
      180: (2,2,1)
      576: (6,2)
      420: (2,1,1,1)
      360: (3,2,1)
      864: (5,3)
     1296: (4,4)
      720: (4,2,1)
    36864: (12,2)
     1080: (3,3,1)
     1440: (5,2,1)
     1260: (2,2,1,1)
     5184: (6,4)
     1800: (3,2,2)
     2160: (4,3,1)
     3360: (5,1,1,1)
     5760: (7,2,1)
    15552: (6,5)
     4620: (2,1,1,1,1)
     2520: (3,2,1,1)
150994944: (24,2)
		

Crossrefs

Positions of first appearances in A328959.
All terms are in A025487.

Programs

  • Mathematica
    dat=Table[DivisorSigma[0,n]-(PrimeOmega[n]-1)*PrimeNu[n],{n,1000}];
    Table[Position[dat,i][[1,1]],{i,First[Split[Union[dat],#2==#1+1&]]}]
  • PARI
    search_up_to = 2^28;
    A307408(n) = 2+((bigomega(n)-1)*omega(n));
    A328959(n) = (numdiv(n) - A307408(n));
    A328963(search_up_to) = { my(m=Map(),t,lista=List([])); for(n=1,search_up_to,t =
    A328959(n); if(!mapisdefined(m,t+2), mapput(m,t+2,n))); for(u=1,oo,if(!mapisdefined(m,u,&t),return(Vec(lista)), listput(lista,t))); };
    v328963 = A328963(search_up_to);
    A328963(n) = v328963[n]; \\ Antti Karttunen, Nov 17 2019

Extensions

Definition corrected and terms a(25) - a(30) added by Antti Karttunen, Nov 17 2019
a(31)-a(42) from Giovanni Resta, Nov 18 2019

A328965 Smallest k such that (bigomega(k) - 1) * omega(k) = n, and 0 if none exists, where omega = A001221, bigomega = A001222.

Original entry on oeis.org

1, 4, 6, 16, 12, 64, 24, 256, 48, 60, 96, 4096, 120, 16384, 384, 240, 420, 262144, 480, 1048576, 840, 960, 6144, 16777216, 1680, 4620, 24576, 3840, 3360, 1073741824, 7680, 4294967296, 6720, 15360, 393216, 18480, 13440, 274877906944, 1572864, 61440, 26880, 4398046511104
Offset: 0

Views

Author

Gus Wiseman, Nov 02 2019

Keywords

Comments

For n > 0, a(n) is of the form 2^k*primorial(d) where d is a divisor of n and k = n / d - d + 1. a(n) is never 0 since A307409(2^(n+1)) = n. - Andrew Howroyd, Nov 04 2019

Examples

			The sequence of terms together with their prime signatures begins:
      1: ()
      4: (2)
      6: (1,1)
     16: (4)
     12: (2,1)
     64: (6)
     24: (3,1)
    256: (8)
     48: (4,1)
     60: (2,1,1)
     96: (5,1)
   4096: (12)
    120: (3,1,1)
  16384: (14)
    384: (7,1)
    240: (4,1,1)
    420: (2,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    dat=Table[(PrimeOmega[n]-1)*PrimeNu[n],{n,1000}];
    Table[Position[dat,i][[1,1]],{i,First[Split[Union[dat],#2==#1+1&]]}]
  • PARI
    a(n)={if(n<1, 1, my(m=oo); fordiv(n, d, if(d<=n/d+1, m=min(m, 2^(n/d-d+1)*vecprod(primes(d))))); m)} \\ Andrew Howroyd, Nov 04 2019

Formula

From Andrew Howroyd, Nov 03 2019: (Start)
a(p) = 2^(p + 1) for odd prime p.
a(n) = min_{d|n, d<=n/d+1} 2^(n/d-d+1)*A002110(d) for n > 0. (End)

Extensions

Terms a(23) and beyond from Andrew Howroyd, Nov 03 2019

A328964 Smallest k such that omega(k) * bigomega(k) = n, where omega = A001221, bigomega = A001222.

Original entry on oeis.org

1, 2, 4, 8, 6, 32, 12, 128, 24, 30, 48, 2048, 60, 8192, 192, 120, 210, 131072, 240, 524288, 420, 480, 3072, 8388608, 840, 2310, 12288, 1920, 1680, 536870912, 3840, 2147483648, 3360, 7680, 196608, 9240, 6720, 137438953472, 786432, 30720, 13440, 2199023255552, 60060, 8796093022208
Offset: 0

Views

Author

Gus Wiseman, Nov 02 2019

Keywords

Examples

			The sequence of terms together with their prime signatures begins:
     1: ()
     2: (1)
     4: (2)
     8: (3)
     6: (1,1)
    32: (5)
    12: (2,1)
   128: (7)
    24: (3,1)
    30: (1,1,1)
    48: (4,1)
  2048: (11)
    60: (2,1,1)
  8192: (13)
   192: (6,1)
   120: (3,1,1)
   210: (1,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    dat=Table[PrimeOmega[n]*PrimeNu[n],{n,1000}];
    Table[Position[dat,i][[1,1]],{i,First[Split[Union[dat],#2==#1+1&]]}]
  • PARI
    a(n)={if(n<1, 1, my(m=oo); fordiv(n, d, if(d<=n/d, m=min(m, 2^(n/d-d)*vecprod(primes(d))))); m)} \\ Andrew Howroyd, Nov 04 2019

Formula

a(p) = 2^p, for p prime. - Daniel Suteu, Nov 03 2019
a(n) = min_{d|n, d<=n/d} 2^(n/d-d)*A002110(d) for n > 0. - Andrew Howroyd, Nov 04 2019

Extensions

More terms from Daniel Suteu, Nov 03 2019

A068993 Numbers k such that A062799(k) = 4.

Original entry on oeis.org

6, 10, 14, 15, 16, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2002

Keywords

Comments

4*a(n)^2 are the solutions to A048272(x) = -Sum_{d|x} (-1)^d = -9. - Benoit Cloitre, Apr 14 2002

Crossrefs

Union of A006881 and A030514.

Programs

  • Mathematica
    f[n_] := DivisorSum[n, PrimeNu[#] &]; Select[Range[201], f[#] == 4 &] (* Amiram Eldar, Jul 25 2020 *)
  • PARI
    for(n=1,100,if(sumdiv(n,d,omega(d))==4,print1(n,",")))
    
  • PARI
    is(n)=my(f=factor(n)[,2]~); f==[1,1] || f==[4] \\ Charles R Greathouse IV, Oct 15 2015

Formula

A113901(a(n)) = 4. - Reinhard Zumkeller, Mar 13 2011
Showing 1-10 of 17 results. Next