cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 49 results. Next

A182139 Inverse Moebius transform of A061142.

Original entry on oeis.org

1, 3, 3, 7, 3, 9, 3, 15, 7, 9, 3, 21, 3, 9, 9, 31, 3, 21, 3, 21, 9, 9, 3, 45, 7, 9, 15, 21, 3, 27, 3, 63, 9, 9, 9, 49, 3, 9, 9, 45, 3, 27, 3, 21, 21, 9, 3, 93, 7, 21, 9, 21, 3, 45, 9, 45, 9, 9, 3, 63, 3, 9, 21, 127, 9, 27, 3, 21, 9, 27, 3, 105, 3, 9, 21, 21, 9
Offset: 1

Views

Author

Enrique Pérez Herrero, Apr 14 2012

Keywords

Comments

a(n) is multiplicative with a(p^e) = -1 + 2^(e+1).
If s is squarefree then a(s) = A048691(s).
More generally: Let a_q(n) be multiplicative with a_q(p^e) = (q^(e+1)-1)/ (q-1) for prime p, e >= 0 and some fixed integer q. Then a_q(n) is the inverse Moebius transform of the completely multiplicative sequence b_q(n) = q^bigomega(n) with b_q(p) = q and b_q(1) = 1. For q = 1 see a_q(n) = A000005(n) and b_q(n) = A000012(n), for q = 0 see a_q(n) = A000012(n) and b_q(n) = A000007(n) with offset 1, and for q = -1 see a_q(n) = A010052(n) with offset 1 and b_q(n) = A008836(n). - Werner Schulte, Feb 20 2019

Examples

			a(12) = a(2^2 * 3^1) = (-1 + 2^(2+1)) * (-1 + 2^(1+1)) = 7 * 3 = 21; or, using the divisors set {1,2,3,4,6,12}: 2^0 + 2^1 + 2^1 + 2^2 + 2^2 + 2^3 = 21.
		

Crossrefs

Programs

  • Mathematica
    t[n_] := DivisorSum[n, 2^PrimeOmega[#]&]; Table[t[n], {n,100}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - X)/(1 - 2*X))[n], ", ")) \\ Vaclav Kotesovec, Mar 14 2023

Formula

a(n) = Sum_{d|n} 2^Omega(d) = Sum_{d|n} 2^A001222(d) = Sum_{d|n} A061142(d).
Dirichlet g.f.: zeta(s)^3 * Product_{p prime} 1/(1 - 1/(p^s - 1)^2).

A034444 a(n) is the number of unitary divisors of n (d such that d divides n, gcd(d, n/d) = 1).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 2, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 8
Offset: 1

Views

Author

Keywords

Comments

If n = Product p_i^a_i, d = Product p_i^c_i is a unitary divisor of n if each c_i is 0 or a_i.
Also the number of squarefree divisors of n. - Labos Elemer
Also number of divisors of the squarefree kernel of n: a(n) = A000005(A007947(n)). - Reinhard Zumkeller, Jul 19 2002
Also shadow transform of pronic numbers A002378.
For n >= 1 define an n X n (0,1) matrix A by A[i,j] = 1 if lcm(i,j) = n, A[i,j] = 0 if lcm(i,j) <> n for 1 <= i,j <= n. a(n) is the rank of A. - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 11 2003
a(n) is also the number of solutions to x^2 - x == 0 (mod n). - Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 21 2003
a(n) is the number of squarefree divisors of n, but in general the set of unitary divisors of n is not the set of squarefree divisors (compare the rows of A077610 and A206778). - Jaroslav Krizek, May 04 2009
Row lengths of the triangles in A077610 and in A206778. - Reinhard Zumkeller, Feb 12 2012
a(n) is also the number of distinct residues of k^phi(n) (mod n), k=0..n-1. - Michel Lagneau, Nov 15 2012
a(n) is the number of irreducible fractions y/x that satisfy x*y=n (and gcd(x,y)=1), x and y positive integers. - Luc Rousseau, Jul 09 2017
a(n) is the number of (x,y) lattice points satisfying both x*y=n and (x,y) is visible from (0,0), x and y positive integers. - Luc Rousseau, Jul 10 2017
Conjecture: For any nonnegative integer k and positive integer n, the sum of the k-th powers of the unitary divisors of n is divisible by the sum of the k-th powers of the odd unitary divisors of n (note that this sequence lists the sum of the 0th powers of the unitary divisors of n). - Ivan N. Ianakiev, Feb 18 2018
a(n) is the number of one-digit numbers, k, when written in base n such that k and k^2 end in the same digit. - Matthew Scroggs, Jun 01 2018
Dirichlet convolution of A271102 and A000005. - Vaclav Kotesovec, Apr 08 2019
Conjecture: Let b(i; n), n > 0, be multiplicative sequences for some fixed integer i >= 0 with b(i; p^e) = (Sum_{k=1..i+1} A164652(i, k) * e^(k-1)) * (i+2) / (i!) for prime p and e > 0. Then we have Dirichlet generating functions: Sum_{n > 0} b(i; n) / n^s = (zeta(s))^(i+2) / zeta((i+2) * s). Examples for i=0 this sequence, for i=1 A226602, and for i=2 A286779. - Werner Schulte, Feb 17 2022
The smallest integer with 2^m unitary divisors, or equivalently, the smallest integer with 2^m squarefree divisors, is A002110(m). - Bernard Schott, Oct 04 2022

Examples

			a(12) = 4 because the four unitary divisors of 12 are 1, 3, 4, 12, and also because the four squarefree divisors of 12 are 1, 2, 3, 6.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sect. B3.

Crossrefs

Sum of the k-th powers of the squarefree divisors of n for k=0..10: this sequence (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: this sequence (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), this sequence (k=10).
Cf. A020821 (Dgf at s=2), A177057 (Dgf at s=4).

Programs

  • Haskell
    a034444 = length . a077610_row  -- Reinhard Zumkeller, Feb 12 2012
    
  • Magma
    [#[d:d in Divisors(n)|Gcd(d,n div d) eq 1]:n in [1..110]]; // Marius A. Burtea, Jan 11 2020
    
  • Magma
    [&+[Abs(MoebiusMu(d)):d in Divisors(n)]:n in [1..110]]; // Marius A. Burtea, Jan 11 2020
  • Maple
    with(numtheory): for n from 1 to 200 do printf(`%d,`,2^nops(ifactors(n)[2])) od:
    with(numtheory);
    # returns the number of unitary divisors of n and a list of them
    f:=proc(n)
    local ct,i,t1,ans;
    ct:=0; ans:=[];
    t1:=divisors(n);
    for i from 1 to nops(t1) do
    d:=t1[i];
    if igcd(d,n/d)=1 then ct:=ct+1; ans:=[op(ans),d]; fi;
    od:
    RETURN([ct,ans]);
    end;
    # N. J. A. Sloane, May 01 2013
    # alternative Maple program:
    a:= n-> 2^nops(ifactors(n)[2]):
    seq(a(n), n=1..105);  # Alois P. Heinz, Jan 23 2024
    a := n -> 2^NumberTheory:-NumberOfPrimeFactors(n, distinct):  # Peter Luschny, May 13 2025
  • Mathematica
    a[n_] := Count[Divisors[n], d_ /; GCD[d, n/d] == 1]; a /@ Range[105] (* Jean-François Alcover, Apr 05 2011 *)
    Table[2^PrimeNu[n],{n,110}] (* Harvey P. Dale, Jul 14 2011 *)
  • PARI
    a(n)=1<Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+X)/(1-X))[n], ", ")) \\ Vaclav Kotesovec, Sep 26 2020
    
  • Python
    from sympy import divisors, gcd
    def a(n):
        return sum(1 for d in divisors(n) if gcd(d, n//d)==1)
    # Indranil Ghosh, Apr 16 2017
    
  • Python
    from sympy import primefactors
    def a(n): return 2**len(primefactors(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 16 2017
    
  • Scheme
    (define (A034444 n) (if (= 1 n) n (* 2 (A034444 (A028234 n))))) ;; Antti Karttunen, May 29 2017
    

Formula

a(n) = Sum_{d|n} abs(mu(n)) = 2^(number of different primes dividing n) = 2^A001221(n), with mu(n) = A008683(n). [Added Möbius formula. - Wolfdieter Lang, Jan 11 2020]
a(n) = Product_{ primes p|n } (1 + Legendre(1, p)).
Multiplicative with a(p^k)=2 for p prime and k>0. - Henry Bottomley, Oct 25 2001
a(n) = Sum_{d|n} tau(d^2)*mu(n/d), Dirichlet convolution of A048691 and A008683. - Benoit Cloitre, Oct 03 2002
Dirichlet generating function: zeta(s)^2/zeta(2s). - Franklin T. Adams-Watters, Sep 11 2005
Inverse Mobius transform of A008966. - Franklin T. Adams-Watters, Sep 11 2005
Asymptotically [Finch] the cumulative sum of a(n) = Sum_{n=1..N} a(n) ~ (6/(Pi^2))*N*log(N) + (6/(Pi^2))*(2*gamma - 1 - (12/(Pi^2))*zeta'(2))*N + O(sqrt(N)). - Jonathan Vos Post, May 08 2005 [typo corrected by Vaclav Kotesovec, Sep 13 2018]
a(n) = Sum_{d|n} floor(rad(d)/d), where rad is A007947 and floor(rad(n)/n) = A008966(n). - Enrique Pérez Herrero, Nov 13 2009
a(n) = A000005(n) - A048105(n); number of nonzero terms in row n of table A225817. - Reinhard Zumkeller, Jul 30 2013
G.f.: Sum_{n>0} A008966(n)*x^n/(1-x^n). - Mircea Merca, Feb 25 2014
a(n) = Sum_{d|n} lambda(d)*mu(d), where lambda is A008836. - Enrique Pérez Herrero, Apr 27 2014
a(n) = A277561(A156552(n)). - Antti Karttunen, May 29 2017
a(n) = A005361(n^2)/A005361(n). - Velin Yanev, Jul 26 2017
L.g.f.: -log(Product_{k>=1} (1 - mu(k)^2*x^k)^(1/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
a(n) = Sum_{d|n} A001615(d) * A023900(n/d). - Torlach Rush, Jan 20 2020
Sum_{d|n, gcd(d, n/d) = 1} a(d) * (-1)^omega(n/d) = 1. - Amiram Eldar, May 29 2020
a(n) = lim_{k->oo} A000005(n^(2*k))/A000005(n^k). - Velin Yanev and Amiram Eldar, Jan 10 2025

Extensions

More terms from James Sellers, Jun 20 2000

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014

A001316 Gould's sequence: a(n) = Sum_{k=0..n} (binomial(n,k) mod 2); number of odd entries in row n of Pascal's triangle (A007318); a(n) = 2^A000120(n).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 4, 8, 8, 16, 8, 16, 16, 32, 8, 16, 16, 32, 16, 32, 32, 64, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 4, 8, 8, 16, 8, 16, 16, 32
Offset: 0

Views

Author

Keywords

Comments

Also called Dress's sequence.
This sequence might be better called Glaisher's sequence, since James Glaisher showed that odd binomial coefficients are counted by 2^A000120(n) in 1899. - Eric Rowland, Mar 17 2017 [However, the name "Gould's sequence" is deeply entrenched in the literature. - N. J. A. Sloane, Mar 17 2017] [Named after the American mathematician Henry Wadsworth Gould (b. 1928). - Amiram Eldar, Jun 19 2021]
All terms are powers of 2. The first occurrence of 2^k is at n = 2^k - 1; e.g., the first occurrence of 16 is at n = 15. - Robert G. Wilson v, Dec 06 2000
a(n) is the highest power of 2 dividing binomial(2n,n) = A000984(n). - Benoit Cloitre, Jan 23 2002
Also number of 1's in n-th row of triangle in A070886. - Hans Havermann, May 26 2002. Equivalently, number of live cells in generation n of a one-dimensional cellular automaton, Rule 90, starting with a single live cell. - Ben Branman, Feb 28 2009. Ditto for Rule 18. - N. J. A. Sloane, Aug 09 2014. This is also the odd-rule cellular automaton defined by OddRule 003 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 25 2015
Also number of numbers k, 0<=k<=n, such that (k OR n) = n (bitwise logical OR): a(n) = #{k : T(n,k)=n, 0<=k<=n}, where T is defined as in A080098. - Reinhard Zumkeller, Jan 28 2003
To construct the sequence, start with 1 and use the rule: If k >= 0 and a(0),a(1),...,a(2^k-1) are the first 2^k terms, then the next 2^k terms are 2*a(0),2*a(1),...,2*a(2^k-1). - Benoit Cloitre, Jan 30 2003
Also, numerator((2^k)/k!). - Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Mar 03 2004
The odd entries in Pascal's triangle form the Sierpiński Gasket (a fractal). - Amarnath Murthy, Nov 20 2004
Row sums of Sierpiński's Gasket A047999. - Johannes W. Meijer, Jun 05 2011
Fixed point of the morphism "1" -> "1,2", "2" -> "2,4", "4" -> "4,8", ..., "2^k" -> "2^k,2^(k+1)", ... starting with a(0) = 1; 1 -> 12 -> 1224 -> = 12242448 -> 122424482448488(16) -> ... . - Philippe Deléham, Jun 18 2005
a(n) = number of 1's of stage n of the one-dimensional cellular automaton with Rule 90. - Andras Erszegi (erszegi.andras(AT)chello.hu), Apr 01 2006
a(33)..a(63) = A117973(1)..A117973(31). - Stephen Crowley, Mar 21 2007
Or the number of solutions of the equation: A000120(x) + A000120(n-x) = A000120(n). - Vladimir Shevelev, Jul 19 2009
For positive n, a(n) equals the denominator of the permanent of the n X n matrix consisting entirely of (1/2)'s. - John M. Campbell, May 26 2011
Companions to A001316 are A048896, A105321, A117973, A151930 and A191488. They all have the same structure. We observe that for all these sequences a((2*n+1)*2^p-1) = C(p)*A001316(n), p >= 0. If C(p) = 2^p then a(n) = A001316(n), if C(p) = 1 then a(n) = A048896(n), if C(p) = 2^p+2 then a(n) = A105321(n+1), if C(p) = 2^(p+1) then a(n) = A117973(n), if C(p) = 2^p-2 then a(n) = (-1)*A151930(n) and if C(p) = 2^(p+1)+2 then a(n) = A191488(n). Furthermore for all a(2^p - 1) = C(p). - Johannes W. Meijer, Jun 05 2011
a(n) = number of zeros in n-th row of A219463 = number of ones in n-th row of A047999. - Reinhard Zumkeller, Nov 30 2012
This is the Run Length Transform of S(n) = {1,2,4,8,16,...} (cf. A000079). The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g., 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product). - N. J. A. Sloane, Sep 05 2014
A105321(n+1) = a(n+1) + a(n). - Reinhard Zumkeller, Nov 14 2014
a(n) = A261363(n,n) = number of distinct terms in row n of A261363 = number of odd terms in row n+1 of A261363. - Reinhard Zumkeller, Aug 16 2015
From Gary W. Adamson, Aug 26 2016: (Start)
A production matrix for the sequence is lim_{k->infinity} M^k, the left-shifted vector of M:
1, 0, 0, 0, 0, ...
2, 0, 0, 0, 0, ...
0, 1, 0, 0, 0, ...
0, 2, 0, 0, 0, ...
0, 0, 1, 0, 0, ...
0, 0, 2, 0, 0, ...
0, 0, 0, 1, 0, ...
...
The result is equivalent to the g.f. of Apr 06 2003: Product_{k>=0} (1 + 2*z^(2^k)). (End)
Number of binary palindromes of length n for which the first floor(n/2) symbols are themselves a palindrome (Ji and Wilf 2008). - Jeffrey Shallit, Jun 15 2017

Examples

			Has a natural structure as a triangle:
  1,
  2,
  2,4,
  2,4,4,8,
  2,4,4,8,4,8,8,16,
  2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,
  2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,4,8,8,16,8,16,16,32,8,16,16,32,16,32,32,64,
  ...
The rows converge to A117973.
From _Omar E. Pol_, Jun 07 2009: (Start)
Also, triangle begins:
   1;
   2,2;
   4,2,4,4;
   8,2,4,4,8,4,8,8;
  16,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16;
  32,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,4,8,8,16,8,16,16,32,8,16,16,32,16,32,32;
  64,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,4,8,8,16,8,16,16,32,8,16,16,32,16,32,...
(End)
G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 2*x^4 + 4*x^5 + 4*x^6 + 8*x^7 + 2*x^8 + ... - _Michael Somos_, Aug 26 2015
		

References

  • Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, p. 75ff.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 145-151.
  • James W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quarterly Journal of Pure and Applied Mathematics, Vol. 30 (1899), pp. 150-156.
  • H. W. Gould, Exponential Binomial Coefficient Series. Tech. Rep. 4, Math. Dept., West Virginia Univ., Morgantown, WV, Sep 1961.
  • Olivier Martin, Andrew M. Odlyzko, and Stephen Wolfram, Algebraic properties of cellular automata, Comm. Math. Physics, Vol. 93 (1984), pp. 219-258. Reprinted in Theory and Applications of Cellular Automata, S Wolfram, Ed., World Scientific, 1986, pp. 51-90 and in Cellular Automata and Complexity: Collected Papers of Stephen Wolfram, Addison-Wesley, 1994, pp. 71-113
  • Manfred R. Schroeder, Fractals, Chaos, Power Laws, W. H. Freeman, NY, 1991, page 383.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Andrew Wuensche, Exploring Discrete Dynamics, Luniver Press, 2011. See Fig. 2.3.

Crossrefs

Equals left border of triangle A166548. - Gary W. Adamson, Oct 16 2009
For generating functions Product_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
For partial sums see A006046. For first differences see A151930.
This is the numerator of 2^n/n!, while A049606 gives the denominator.
If we subtract 1 from the terms we get a pair of essentially identical sequences, A038573 and A159913.
A163000 and A163577 count binomial coefficients with 2-adic valuation 1 and 2. A275012 gives a measure of complexity of these sequences. - Eric Rowland, Mar 15 2017
Cf. A286575 (run-length transform), A368655 (binomial transform), also A037445.

Programs

  • Haskell
    import Data.List (transpose)
    a001316 = sum . a047999_row  -- Reinhard Zumkeller, Nov 24 2012
    a001316_list = 1 : zs where
       zs = 2 : (concat $ transpose [zs, map (* 2) zs])
    -- Reinhard Zumkeller, Aug 27 2014, Sep 16 2011
    (Sage, Python)
    from functools import cache
    @cache
    def A001316(n):
        if n <= 1: return n+1
        return A001316(n//2) << n%2
    print([A001316(n) for n in range(88)])  # Peter Luschny, Nov 19 2012
    
  • Maple
    A001316 := proc(n) local k; add(binomial(n,k) mod 2, k=0..n); end;
    S:=[1]; S:=[op(S),op(2*s)]; # repeat ad infinitum!
    a := n -> 2^add(i,i=convert(n,base,2)); # Peter Luschny, Mar 11 2009
  • Mathematica
    Table[ Sum[ Mod[ Binomial[n, k], 2], {k, 0, n} ], {n, 0, 100} ]
    Nest[ Join[#, 2#] &, {1}, 7] (* Robert G. Wilson v, Jan 24 2006 and modified Jul 27 2014 *)
    Map[Function[Apply[Plus,Flatten[ #1]]], CellularAutomaton[90,{{1},0},100]] (* Produces counts of ON cells. N. J. A. Sloane, Aug 10 2009 *)
    ArrayPlot[CellularAutomaton[90, {{1}, 0}, 20]] (* Illustration of first 20 generations. - N. J. A. Sloane, Aug 14 2014 *)
    Table[2^(RealDigits[n - 1, 2][[1]] // Total), {n, 1, 100}] (* Gabriel C. Benamy, Dec 08 2009 *)
    CoefficientList[Series[Exp[2*x], {x, 0, 100}], x] // Numerator (* Jean-François Alcover, Oct 25 2013 *)
    Count[#,?OddQ]&/@Table[Binomial[n,k],{n,0,90},{k,0,n}] (* _Harvey P. Dale, Sep 22 2015 *)
    2^DigitSum[Range[0, 100], 2] (* Paolo Xausa, Jul 31 2025 *)
  • PARI
    {a(n) = if( n<0, 0, numerator(2^n / n!))};
    
  • PARI
    A001316(n)=1<M. F. Hasler, May 03 2009
    
  • PARI
    a(n)=2^hammingweight(n) \\ Charles R Greathouse IV, Jan 04 2013
    
  • Python
    def A001316(n):
        return 2**bin(n)[2:].count("1") # Indranil Ghosh, Feb 06 2017
    
  • Python
    def A001316(n): return 1<Karl-Heinz Hofmann, Aug 01 2025
    
  • Python
    import numpy # (version >= 2.0.0)
    n_up_to = 2**22
    A000079 = 1 << numpy.arange(n_up_to.bit_length())
    A001316 = A000079[numpy.bitwise_count(numpy.arange(n_up_to))]
    print(A001316[0:100]) # Karl-Heinz Hofmann, Aug 01 2025
    
  • Scheme
    (define (A001316 n) (let loop ((n n) (z 1)) (cond ((zero? n) z) ((even? n) (loop (/ n 2) z)) (else (loop (/ (- n 1) 2) (* z 2)))))) ;; Antti Karttunen, May 29 2017

Formula

a(n) = 2^A000120(n).
a(0) = 1; for n > 0, write n = 2^i + j where 0 <= j < 2^i; then a(n) = 2*a(j).
a(n) = 2*a(n-1)/A006519(n) = A000079(n)*A049606(n)/A000142(n).
a(n) = A038573(n) + 1.
G.f.: Product_{k>=0} (1+2*z^(2^k)). - Ralf Stephan, Apr 06 2003
a(n) = Sum_{i=0..2*n} (binomial(2*n, i) mod 2)*(-1)^i. - Benoit Cloitre, Nov 16 2003
a(n) mod 3 = A001285(n). - Benoit Cloitre, May 09 2004
a(n) = 2^n - 2*Sum_{k=0..n} floor(binomial(n, k)/2). - Paul Barry, Dec 24 2004
a(n) = Product_{k=0..log_2(n)} 2^b(n, k), b(n, k) = coefficient of 2^k in binary expansion of n. - Paul D. Hanna
Sum_{k=0..n-1} a(k) = A006046(n).
a(n) = n/2 + 1/2 + (1/2)*Sum_{k=0..n} (-(-1)^binomial(n,k)). - Stephen Crowley, Mar 21 2007
G.f. for a(n)/A156769(n): (1/2)*z^(1/2)*sinh(2*z^(1/2)). - Johannes W. Meijer, Feb 20 2009
Equals infinite convolution product of [1,2,0,0,0,0,0,0,0] aerated (A000079 - 1) times, i.e., [1,2,0,0,0,0,0,0,0] * [1,0,2,0,0,0,0,0,0] * [1,0,0,0,2,0,0,0,0]. - Mats Granvik, Gary W. Adamson, Oct 02 2009
a(n) = f(n, 1) with f(x, y) = if x = 0 then y otherwise f(floor(x/2), y*(1 + x mod 2)). - Reinhard Zumkeller, Nov 21 2009
a(n) = 2^(number of 1's in binary form of (n-1)). - Gabriel C. Benamy, Dec 08 2009
a((2*n+1)*2^p-1) = (2^p)*a(n), p >= 0. - Johannes W. Meijer, Jun 05 2011
a(n) = A000120(A001317(n)). - Reinhard Zumkeller, Nov 24 2012
a(n) = A226078(n,1). - Reinhard Zumkeller, May 25 2013
a(n) = lcm(n!, 2^n) / n!. - Daniel Suteu, Apr 28 2017
a(n) = A061142(A005940(1+n)). - Antti Karttunen, May 29 2017
a(0) = 1, a(2*n) = a(n), a(2*n+1) = 2*a(n). - Daniele Parisse, Feb 15 2024
a(n*m) <= a(n)^A000120(m). - Joe Amos, Mar 27 2025

Extensions

Additional comments from Henry Bottomley, Mar 12 2001
Further comments from N. J. A. Sloane, May 30 2009

A003959 If n = Product p(k)^e(k) then a(n) = Product (p(k)+1)^e(k), a(1) = 1.

Original entry on oeis.org

1, 3, 4, 9, 6, 12, 8, 27, 16, 18, 12, 36, 14, 24, 24, 81, 18, 48, 20, 54, 32, 36, 24, 108, 36, 42, 64, 72, 30, 72, 32, 243, 48, 54, 48, 144, 38, 60, 56, 162, 42, 96, 44, 108, 96, 72, 48, 324, 64, 108, 72, 126, 54, 192, 72, 216, 80, 90, 60, 216, 62, 96, 128, 729, 84, 144, 68
Offset: 1

Views

Author

Keywords

Comments

Completely multiplicative.
Sum of divisors of n with multiplicity. If n = p^m, the number of ways to make p^k as a divisor of n is C(m,k); and sum(C(m,k)*p^k) = (p+1)^k. The rest follows because the function is multiplicative. - Franklin T. Adams-Watters, Jan 25 2010

Crossrefs

Programs

  • Haskell
    a003959 1 = 1
    a003959 n = product $ map (+ 1) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012
  • Maple
    a:= n-> mul((i[1]+1)^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]]+1)^fi[[All, 2]])); a /@ Range[67] (* Jean-François Alcover, Apr 22 2011 *)
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X-p*X))[n]) /* Ralf Stephan */
    

Formula

Multiplicative with a(p^e) = (p+1)^e. - David W. Wilson, Aug 01 2001
Sum_{n>0} a(n)/n^s = Product_{p prime} 1/(1-p^(-s)-p^(1-s)) (conjectured). - Ralf Stephan, Jul 07 2013
This follows from the absolute convergence of the sum (compare with a(n) = n^2) and the Euler product for completely multiplicative functions. Convergence occurs for at least Re(s)>3. - Thomas Anton, Jul 15 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065488/2 = 1/(2*A005596) = 1.3370563627850107544802059152227440187511993141988459926... - Vaclav Kotesovec, Jul 17 2021
From Thomas Scheuerle, Jul 19 2021: (Start)
a(n) = gcd(A166642(n), A166643(n)).
a(n) = A166642(n)/A061142(n).
a(n) = A166643(n)/A165824(n).
a(n) = A166644(n)/A165825(n).
a(n) = A166645(n)/A165826(n).
a(n) = A166646(n)/A165827(n).
a(n) = A166647(n)/A165828(n).
a(n) = A166649(n)/A165830(n).
a(n) = A166650(n)/A165831(n).
a(n) = A167351(n)/A166590(n). (End)
Dirichlet g.f.: zeta(s-1) * Product_{primes p} (1 + 1/(p^s - p - 1)). - Vaclav Kotesovec, Aug 22 2021

Extensions

Definition reedited (with formula) by Daniel Forgues, Nov 17 2009

A165824 Totally multiplicative sequence with a(p) = 3.

Original entry on oeis.org

1, 3, 3, 9, 3, 9, 3, 27, 9, 9, 3, 27, 3, 9, 9, 81, 3, 27, 3, 27, 9, 9, 3, 81, 9, 9, 27, 27, 3, 27, 3, 243, 9, 9, 9, 81, 3, 9, 9, 81, 3, 27, 3, 27, 27, 9, 3, 243, 9, 27, 9, 27, 3, 81, 9, 81, 9, 9, 3, 81, 3, 9, 27, 729, 9, 27, 3, 27, 9, 27, 3, 243, 3, 9, 27, 27
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Crossrefs

Cf. A000244, A001222, A061142, A347149, A350961 (partial sums).

Programs

  • Maple
    A165824 := proc(n)
        3^numtheory[bigomega](n) ;
    end proc:
    seq(A165824(n),n=1..40) ; # R. J. Mathar, Mar 07 2022
  • Mathematica
    3^PrimeOmega[Range[100]] (* G. C. Greubel, Apr 09 2016 *)
  • PARI
    a(n) = 3^bigomega(n); \\ Altug Alkan, Apr 09 2016
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-3*X))[n], ", ")) \\ Vaclav Kotesovec, May 08 2025

Formula

a(n) = A000244(A001222(n)) = 3^bigomega(n) = 3^A001222(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 3 * p^(-s)). - Ilya Gutkovskiy, Oct 30 2019

Extensions

More terms from Vaclav Kotesovec, Feb 16 2022

A058933 Let k be bigomega(n) (i.e., n is a k-almost-prime). a(n) = number of k-almost-primes <= n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 3, 4, 5, 2, 6, 5, 6, 1, 7, 3, 8, 4, 7, 8, 9, 2, 9, 10, 5, 6, 10, 7, 11, 1, 11, 12, 13, 3, 12, 14, 15, 4, 13, 8, 14, 9, 10, 16, 15, 2, 17, 11, 18, 12, 16, 5, 19, 6, 20, 21, 17, 7, 18, 22, 13, 1, 23, 14, 19, 15, 24, 16, 20, 3, 21, 25, 17, 18, 26, 19, 22, 4, 8, 27, 23
Offset: 1

Views

Author

Naohiro Nomoto, Jan 11 2001

Keywords

Comments

Equivalently, the number of positive integers less than or equal to n with the same number of prime factors as n, counted with multiplicity. - Gus Wiseman, Dec 28 2018
There is a close relationship between a(n) and a(n^2). See A209934 for an exploratory quantification. - Peter Munn, Aug 04 2019

Examples

			3 is prime, so a(3)=2. 10 is 2-almost prime (semiprime), so a(10)=4.
From _Gus Wiseman_, Dec 28 2018: (Start)
Column n lists the a(n) positive integers less than or equal to n with the same number of prime factors as n, counted with multiplicity:
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
  ---------------------------------------------------------------------
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
        2     3  4  5     6  9   7   8   11  10  14      13  12  17  18
              2     3     4  6   5       7   9   10      11  8   13  12
                    2        4   3       5   6   9       7       11  8
                                 2       3   4   6       5       7
                                         2       4       3       5
                                                         2       3
                                                                 2
(End)
		

Crossrefs

Positions of 1's are A000079.
Equivalent sequence restricted to squarefree numbers: A340313.

Programs

  • Maple
    p:= proc() 0 end:
    a:= proc(n) option remember; local t;
          t:= numtheory[bigomega](n);
          p(t):= p(t)+1
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 09 2015
  • Mathematica
    p[] = 0; a[n] := a[n] = Module[{t}, t = PrimeOmega[n]; p[t] = p[t]+1]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 24 2017, after Alois P. Heinz *)
  • PARI
    a(n) = my(k=bigomega(n)); sum(i=1, n, bigomega(i)==k); \\ Michel Marcus, Jun 27 2024
    
  • Python
    from math import prod, isqrt
    from sympy import isprime, primepi, primerange, integer_nthroot, primeomega
    def A058933(n):
        if n==1: return 1
        if isprime(n): return primepi(n)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,primeomega(n)))) # Chai Wah Wu, Aug 28 2024

Formula

Ordinal transform of A001222 (bigomega). - Franklin T. Adams-Watters, Aug 28 2006
If a(n) < a(3^A001222(2n)) = A078843(A001222(2n)) then a(2n) = a(n), otherwise a(2n) > a(n). - Peter Munn, Aug 05 2019

Extensions

Name edited by Peter Munn, Dec 30 2022

A165825 Totally multiplicative sequence with a(p) = 4.

Original entry on oeis.org

1, 4, 4, 16, 4, 16, 4, 64, 16, 16, 4, 64, 4, 16, 16, 256, 4, 64, 4, 64, 16, 16, 4, 256, 16, 16, 64, 64, 4, 64, 4, 1024, 16, 16, 16, 256, 4, 16, 16, 256, 4, 64, 4, 64, 64, 16, 4, 1024, 16, 64
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Crossrefs

Programs

  • Mathematica
    4^PrimeOmega[Range[100]] (* G. C. Greubel, Apr 09 2016 *)
  • PARI
    a(n) = 4^bigomega(n); \\ Altug Alkan, Apr 09 2016
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - 4*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 17 2022

Formula

a(n) = A000302(A001222(n)) = 4^bigomega(n) = 4^A001222(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 4 * p^(-s)). - Ilya Gutkovskiy, Oct 30 2019
Sum_{k=1..n} a(k) = c * n^2 / (2 * log(2)) + O(n * log(n)^3), where c = Product_{p prime > 2} 1 / (1 - 4/p^2) = 2.6413142332392629671869467536904049315527375203817456105081927074458279809... - Vaclav Kotesovec, Feb 17 2022

A067003 Number of numbers <= n with same number of distinct prime factors as n.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 5, 6, 7, 2, 8, 3, 9, 4, 5, 10, 11, 6, 12, 7, 8, 9, 13, 10, 14, 11, 15, 12, 16, 1, 17, 18, 13, 14, 15, 16, 19, 17, 18, 19, 20, 2, 21, 20, 21, 22, 22, 23, 23, 24, 25, 26, 24, 27, 28, 29, 30, 31, 25, 3, 26, 32, 33, 27, 34, 4, 28, 35, 36, 5, 29, 37, 30, 38, 39, 40, 41
Offset: 1

Views

Author

Henry Bottomley, Dec 21 2001

Keywords

Examples

			a(11)=8 since 2,3,4,5,7,8,9,11 each have one distinct prime factor. a(12)=3 since 6,10,12 each have two distinct prime factors.
From _Gus Wiseman_, Dec 28 2018: (Start)
Column n lists the a(n) positive integers less than or equal to n with the same number of distinct prime factors as n:
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
  ---------------------------------------------------------------------
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
        2  3  4     5  7  8  6   9   10  11  12  14  13  16  15  17  18
           2  3     4  5  7      8   6   9   10  12  11  13  14  16  15
              2     3  4  5      7       8   6   10  9   11  12  13  14
                    2  3  4      5       7       6   8   9   10  11  12
                       2  3      4       5           7   8   6   9   10
                          2      3       4           5   7       8   6
                                 2       3           4   5       7
                                         2           3   4       5
                                                     2   3       4
                                                         2       3
                                                                 2
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[n],PrimeNu[#]==PrimeNu[n]&]],{n,100}] (* Gus Wiseman, Dec 28 2018 *)
  • PARI
    a(n) = my(nb = #factor(n)~); sum(k=1, n, #factor(k)~ == nb); \\ Michel Marcus, Jul 13 2019

Formula

a(A002110(n)) = 1.

A069205 a(n) = Sum_{k=1..n} 2^bigomega(k).

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 17, 25, 29, 33, 35, 43, 45, 49, 53, 69, 71, 79, 81, 89, 93, 97, 99, 115, 119, 123, 131, 139, 141, 149, 151, 183, 187, 191, 195, 211, 213, 217, 221, 237, 239, 247, 249, 257, 265, 269, 271, 303, 307, 315, 319, 327, 329, 345, 349, 365, 369, 373
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2002

Keywords

Comments

Partial sums of A061142. - Michel Marcus, Aug 08 2017

References

  • G. Tenenbaum and Jie Wu, Cours Spécialisés No. 2: "Théorie analytique et probabiliste des nombres", Collection SMF, Ordres moyens, p. 20.
  • G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 53, exercise 5 (in the third edition 2015, p. 59, exercise 57).

Crossrefs

Programs

  • Mathematica
    Accumulate[2^PrimeOmega[Range[60]]] (* Harvey P. Dale, Aug 22 2011 *)
  • PARI
    a(n) = sum(k=1, n, 2^bigomega(k)); \\ Michel Marcus, Aug 08 2017

Formula

Asymptotic formula: a(n) = 1/(8*log(2))*C*n*log(n)^2+O(n*log(n)) with C = A167864 = Product_{p primes > 2} (1+1/p/(p-2)) where the product is over all the primes p>2.
From Daniel Suteu, May 23 2020: (Start)
a(n) = Sum_{k=1..n} 2^(bigomega(k) - omega(k)) * floor(n/k).
a(n) = Sum_{k=1..n} A335073(floor(n/k)).
a(n) = 1 + Sum_{k=1..floor(log_2(n))} 2^k * pi_k(n), where pi_k(n) is the number of k-almost primes <= n. (End)
More precise asymptotics [Grosswald, 1956]: a(n) ~ A167864*n*log(n)*(log(n) - 2 - 4*A347195 + 4*gamma + 5*log(2))/(8*log(2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 22 2021
Even more precise formula: a(n) ~ A167864 * n / (8*log(2)) * (log(n)^2 + (4*g + 5*log(2) - 2 - 4*A347195)*log(n) + 2 + 2*g^2 - 4*sg1 - 5*log(2) + 13*log(2)^2/6 + 2*g*(5*log(2) - 2) - 2*A347195*(5*log(2) - 2 + 4*g) + 4*A347195^2 + c), where c = Sum_{prime p > 2} (2*p * (2*p-3)* log(p)^2) / ((p-2)^2 * (p-1)^2) = 8.86809160013722347937514407919207620377461987744681170588044228288988578547..., g is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Feb 11 2022
Showing 1-10 of 49 results. Next