cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A003959 If n = Product p(k)^e(k) then a(n) = Product (p(k)+1)^e(k), a(1) = 1.

Original entry on oeis.org

1, 3, 4, 9, 6, 12, 8, 27, 16, 18, 12, 36, 14, 24, 24, 81, 18, 48, 20, 54, 32, 36, 24, 108, 36, 42, 64, 72, 30, 72, 32, 243, 48, 54, 48, 144, 38, 60, 56, 162, 42, 96, 44, 108, 96, 72, 48, 324, 64, 108, 72, 126, 54, 192, 72, 216, 80, 90, 60, 216, 62, 96, 128, 729, 84, 144, 68
Offset: 1

Views

Author

Keywords

Comments

Completely multiplicative.
Sum of divisors of n with multiplicity. If n = p^m, the number of ways to make p^k as a divisor of n is C(m,k); and sum(C(m,k)*p^k) = (p+1)^k. The rest follows because the function is multiplicative. - Franklin T. Adams-Watters, Jan 25 2010

Crossrefs

Programs

  • Haskell
    a003959 1 = 1
    a003959 n = product $ map (+ 1) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012
  • Maple
    a:= n-> mul((i[1]+1)^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]]+1)^fi[[All, 2]])); a /@ Range[67] (* Jean-François Alcover, Apr 22 2011 *)
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X-p*X))[n]) /* Ralf Stephan */
    

Formula

Multiplicative with a(p^e) = (p+1)^e. - David W. Wilson, Aug 01 2001
Sum_{n>0} a(n)/n^s = Product_{p prime} 1/(1-p^(-s)-p^(1-s)) (conjectured). - Ralf Stephan, Jul 07 2013
This follows from the absolute convergence of the sum (compare with a(n) = n^2) and the Euler product for completely multiplicative functions. Convergence occurs for at least Re(s)>3. - Thomas Anton, Jul 15 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065488/2 = 1/(2*A005596) = 1.3370563627850107544802059152227440187511993141988459926... - Vaclav Kotesovec, Jul 17 2021
From Thomas Scheuerle, Jul 19 2021: (Start)
a(n) = gcd(A166642(n), A166643(n)).
a(n) = A166642(n)/A061142(n).
a(n) = A166643(n)/A165824(n).
a(n) = A166644(n)/A165825(n).
a(n) = A166645(n)/A165826(n).
a(n) = A166646(n)/A165827(n).
a(n) = A166647(n)/A165828(n).
a(n) = A166649(n)/A165830(n).
a(n) = A166650(n)/A165831(n).
a(n) = A167351(n)/A166590(n). (End)
Dirichlet g.f.: zeta(s-1) * Product_{primes p} (1 + 1/(p^s - p - 1)). - Vaclav Kotesovec, Aug 22 2021

Extensions

Definition reedited (with formula) by Daniel Forgues, Nov 17 2009

A165825 Totally multiplicative sequence with a(p) = 4.

Original entry on oeis.org

1, 4, 4, 16, 4, 16, 4, 64, 16, 16, 4, 64, 4, 16, 16, 256, 4, 64, 4, 64, 16, 16, 4, 256, 16, 16, 64, 64, 4, 64, 4, 1024, 16, 16, 16, 256, 4, 16, 16, 256, 4, 64, 4, 64, 64, 16, 4, 1024, 16, 64
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Crossrefs

Programs

  • Mathematica
    4^PrimeOmega[Range[100]] (* G. C. Greubel, Apr 09 2016 *)
  • PARI
    a(n) = 4^bigomega(n); \\ Altug Alkan, Apr 09 2016
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - 4*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 17 2022

Formula

a(n) = A000302(A001222(n)) = 4^bigomega(n) = 4^A001222(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 4 * p^(-s)). - Ilya Gutkovskiy, Oct 30 2019
Sum_{k=1..n} a(k) = c * n^2 / (2 * log(2)) + O(n * log(n)^3), where c = Product_{p prime > 2} 1 / (1 - 4/p^2) = 2.6413142332392629671869467536904049315527375203817456105081927074458279809... - Vaclav Kotesovec, Feb 17 2022

A165826 Totally multiplicative sequence with a(p) = 5.

Original entry on oeis.org

1, 5, 5, 25, 5, 25, 5, 125, 25, 25, 5, 125, 5, 25, 25, 625, 5, 125, 5, 125, 25, 25, 5, 625, 25, 25, 125, 125, 5, 125, 5, 3125, 25, 25, 25, 625, 5, 25, 25, 625, 5, 125, 5, 125, 125, 25, 5, 3125, 25, 125
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Crossrefs

Programs

  • Mathematica
    5^PrimeOmega[Range[100]] (* G. C. Greubel, Apr 09 2016 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-5*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 28 2023

Formula

a(n) = A000351(A001222(n)) = 5^bigomega(n) = 5^A001222(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 5 * p^(-s)). - Ilya Gutkovskiy, Oct 30 2019

A347149 Dirichlet g.f.: Product_{primes p} (1 + 3/p^s).

Original entry on oeis.org

1, 3, 3, 0, 3, 9, 3, 0, 0, 9, 3, 0, 3, 9, 9, 0, 3, 0, 3, 0, 9, 9, 3, 0, 0, 9, 0, 0, 3, 27, 3, 0, 9, 9, 9, 0, 3, 9, 9, 0, 3, 27, 3, 0, 0, 9, 3, 0, 0, 0, 9, 0, 3, 0, 9, 0, 9, 9, 3, 0, 3, 9, 0, 0, 9, 27, 3, 0, 9, 27, 3, 0, 3, 9, 0, 0, 9, 27, 3, 0, 0, 9, 3, 0, 9, 9, 9, 0, 3, 0, 9, 0, 9, 9, 9, 0, 3, 0, 0, 0
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n]^2 * 3^PrimeNu[n], {n, 1, 100}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 3*X))[n], ", "))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 6*X^2 + 8*X^3 - 3*X^4)/(1 - X)^3)[n], ", "))

Formula

Dirichlet g.f.: zeta(s)^3 * Product_{primes p} (1 - 6/p^(2*s) + 8/p^(3*s) - 3/p^(4*s)).
Let f(s) = Product_{primes p} (1 - 6/p^(2*s) + 8/p^(3*s) - 3/p^(4*s)), then Sum_{k=1..n} a(k) ~ n * (f(1)*log(n)^2/2 + log(n)*((3*gamma - 1)*f(1) + f'(1)) + f(1)*(1 - 3*gamma + 3*gamma^2 - 3*sg1) + (3*gamma - 1)*f'(1) + f''(1)/2), where f(1) = Product_{primes p} (1 - 6/p^2 + 8/p^3 - 3/p^4) = 0.1148840440802287887292512767015990978487135526872830176248484270625666728..., f'(1) = f(1) * Sum_{primes p} 12*log(p) / ((p-1)*(p+3)) = 0.5497153490016133577871571904347511299324572220423331992393596243955677299..., f''(1) = f'(1)^2/f(1) + f(1) * Sum_{primes p} (-24*p*(p-1) * log(p)^2 / ((p-1)^2 * (p+3)^2)) = 0.9028322988288094236586622799305270026576436536391185119652318723470259904... and gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633).
a(n) = A008966(n) * A048691(n). - Enrique Pérez Herrero, Oct 27 2022
Multiplicative with a(p) = 3, and a(p^e) = 0 for e >= 2. - Amiram Eldar, Dec 25 2022

A166633 Totally multiplicative sequence with a(p) = 3*(p-1) for prime p.

Original entry on oeis.org

1, 3, 6, 9, 12, 18, 18, 27, 36, 36, 30, 54, 36, 54, 72, 81, 48, 108, 54, 108, 108, 90, 66, 162, 144, 108, 216, 162, 84, 216, 90, 243, 180, 144, 216, 324, 108, 162, 216, 324, 120, 324, 126, 270, 432, 198, 138, 486, 324, 432
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2009

Keywords

Crossrefs

Programs

  • Mathematica
    DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] :=
    DirichletInverse[f][n] = -1/f[1]*Sum[f[n/d]*DirichletInverse[f][d], {d, Most[Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; a[m_] := DirichletInverse[muphi][m]; Table[a[m]*3^(PrimeOmega[m]), {m, 1, 100}] (* G. C. Greubel, May 20 2016 *)
    f[p_, e_] := (3*(p-1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 17 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = 3*(f[k,1]-1)); factorback(f);} \\ Michel Marcus, May 20 2016

Formula

Multiplicative with a(p^e) = (3*(p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (3*(p(k)-1))^e(k).
a(n) = A165824(n) * A003958(n) = 3^bigomega(n) * A003958(n) = 3^A001222(n) * A003958(n).

A350961 a(n) = Sum_{k=1..n} 3^Omega(k).

Original entry on oeis.org

1, 4, 7, 16, 19, 28, 31, 58, 67, 76, 79, 106, 109, 118, 127, 208, 211, 238, 241, 268, 277, 286, 289, 370, 379, 388, 415, 442, 445, 472, 475, 718, 727, 736, 745, 826, 829, 838, 847, 928, 931, 958, 961, 988, 1015, 1024, 1027, 1270, 1279, 1306, 1315, 1342, 1345, 1426, 1435, 1516, 1525, 1534, 1537, 1618
Offset: 1

Views

Author

N. J. A. Sloane, Feb 06 2022

Keywords

References

  • Tenenbaum, G. (2015). Introduction to analytic and probabilistic number theory, 3rd ed., American Mathematical Soc. See page 59.

Crossrefs

Cf. A001222 (Omega), A069205, A069212. Partial sums of A165824.

Programs

  • Mathematica
    Accumulate[3^PrimeOmega[Range[100]]] (* Vaclav Kotesovec, Feb 16 2022 *)
  • Python
    from sympy.ntheory.factor_ import primeomega
    def A350961(n): return sum(3**primeomega(m) for m in range(1,n+1)) # Chai Wah Wu, Sep 07 2023

A166643 Totally multiplicative sequence with a(p) = 3*(p+1) for prime p.

Original entry on oeis.org

1, 9, 12, 81, 18, 108, 24, 729, 144, 162, 36, 972, 42, 216, 216, 6561, 54, 1296, 60, 1458, 288, 324, 72, 8748, 324, 378, 1728, 1944, 90, 1944, 96, 59049, 432, 486, 432, 11664, 114, 540, 504, 13122, 126, 2592, 132, 2916, 2592, 648, 144, 78732, 576, 2916
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*3^(PrimeOmega[n]), {n, 1, 100}] (* G. C. Greubel, May 20 2016 *)
    f[p_, e_] := (3*(p+1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 17 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = 3*(f[k,1]+1)); factorback(f);} \\ Michel Marcus, May 21 2016

Formula

Multiplicative with a(p^e) = (3*(p+1))^e. If n = Product p(k)^e(k) then a(n) = Product (3*(p(k)+1))^e(k).
a(n) = A165824(n) * A003959(n) = 3^bigomega(n) * A003959(n) = 3^A001222(n) * A003959(n).

A349922 Dirichlet g.f.: Product_{k>=2} 1 / (1 - 3 * k^(-s)).

Original entry on oeis.org

1, 3, 3, 12, 3, 12, 3, 39, 12, 12, 3, 48, 3, 12, 12, 129, 3, 48, 3, 48, 12, 12, 3, 165, 12, 12, 39, 48, 3, 57, 3, 399, 12, 12, 12, 201, 3, 12, 12, 165, 3, 57, 3, 48, 48, 12, 3, 552, 12, 48, 12, 48, 3, 165, 12, 165, 12, 12, 3, 237, 3, 12, 48, 1245, 12, 57, 3, 48, 12, 57
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 05 2021

Keywords

Crossrefs

A351521 Dirichlet g.f.: Product_{p prime} (1 + 4*p^(-s)).

Original entry on oeis.org

1, 4, 4, 0, 4, 16, 4, 0, 0, 16, 4, 0, 4, 16, 16, 0, 4, 0, 4, 0, 16, 16, 4, 0, 0, 16, 0, 0, 4, 64, 4, 0, 16, 16, 16, 0, 4, 16, 16, 0, 4, 64, 4, 0, 0, 16, 4, 0, 0, 0, 16, 0, 4, 0, 16, 0, 16, 16, 4, 0, 4, 16, 0, 0, 16, 64, 4, 0, 16, 64, 4, 0, 4, 16, 0, 0, 16, 64
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 17 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n]^2 * 4^PrimeNu[n], {n, 1, 100}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 4*X))[n], ", "))

Formula

Dirichlet g.f.: zeta(s)^4 * Product_{prime p} (1 + (4 - 15*p^s + 20*p^(2*s) - 10*p^(3*s))/p^(5*s)).
a(n) = A008966(n) * A035116(n). - Enrique Pérez Herrero, Oct 27 2022
Multiplicative with a(p) = 4, and a(p^e) = 0 for e >= 2. - Amiram Eldar, Dec 25 2022

A166624 Totally multiplicative sequence with a(p) = 3p for prime p.

Original entry on oeis.org

1, 6, 9, 36, 15, 54, 21, 216, 81, 90, 33, 324, 39, 126, 135, 1296, 51, 486, 57, 540, 189, 198, 69, 1944, 225, 234, 729, 756, 87, 810, 93, 7776, 297, 306, 315, 2916, 111, 342, 351, 3240, 123, 1134, 129, 1188, 1215, 414, 141, 11664, 441, 1350
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*3^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, May 19 2016 *)

Formula

Multiplicative with a(p^e) = (3p)^e.
If n = Product p(k)^e(k) then a(n) = Product (3*p(k))^e(k).
a(n) = n * A165824(n) = n * 3^bigomega(n) = n * 3^A001222(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 3 * p^(1 - s)). - Ilya Gutkovskiy, Oct 30 2019
Showing 1-10 of 15 results. Next