cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A165824 Totally multiplicative sequence with a(p) = 3.

Original entry on oeis.org

1, 3, 3, 9, 3, 9, 3, 27, 9, 9, 3, 27, 3, 9, 9, 81, 3, 27, 3, 27, 9, 9, 3, 81, 9, 9, 27, 27, 3, 27, 3, 243, 9, 9, 9, 81, 3, 9, 9, 81, 3, 27, 3, 27, 27, 9, 3, 243, 9, 27, 9, 27, 3, 81, 9, 81, 9, 9, 3, 81, 3, 9, 27, 729, 9, 27, 3, 27, 9, 27, 3, 243, 3, 9, 27, 27
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Crossrefs

Cf. A000244, A001222, A061142, A347149, A350961 (partial sums).

Programs

  • Maple
    A165824 := proc(n)
        3^numtheory[bigomega](n) ;
    end proc:
    seq(A165824(n),n=1..40) ; # R. J. Mathar, Mar 07 2022
  • Mathematica
    3^PrimeOmega[Range[100]] (* G. C. Greubel, Apr 09 2016 *)
  • PARI
    a(n) = 3^bigomega(n); \\ Altug Alkan, Apr 09 2016
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-3*X))[n], ", ")) \\ Vaclav Kotesovec, May 08 2025

Formula

a(n) = A000244(A001222(n)) = 3^bigomega(n) = 3^A001222(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 3 * p^(-s)). - Ilya Gutkovskiy, Oct 30 2019

Extensions

More terms from Vaclav Kotesovec, Feb 16 2022

A074823 a(n) = 2^omega(n)*mu(n)^2.

Original entry on oeis.org

1, 2, 2, 0, 2, 4, 2, 0, 0, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0, 4, 4, 2, 0, 0, 4, 0, 0, 2, 8, 2, 0, 4, 4, 4, 0, 2, 4, 4, 0, 2, 8, 2, 0, 0, 4, 2, 0, 0, 0, 4, 0, 2, 0, 4, 0, 4, 4, 2, 0, 2, 4, 0, 0, 4, 8, 2, 0, 4, 8, 2, 0, 2, 4, 0, 0, 4, 8, 2, 0, 0, 4, 2, 0, 4, 4, 4, 0, 2, 0, 4, 0, 4, 4, 4, 0, 2, 0, 0, 0, 2, 8, 2, 0, 8
Offset: 1

Views

Author

Benoit Cloitre, Sep 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n]^2 * 2^PrimeNu[n], {n, 1, 100}] (* Vaclav Kotesovec, Aug 20 2021 *)
    f[p_, e_] :=If[e==1, 2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 26 2022 *)
  • PARI
    a(n) = 2^omega(n)*moebius(n)^2; \\ Michel Marcus, Jul 23 2017
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 2*X))[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 3*X^2 + 2*X^3)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
  • Scheme
    (define (A074823 n) (if (= 1 n) n (* (if (= 1 (A067029 n)) 2 0) (A074823 (A028234 n))))) ;; Antti Karttunen, Jul 23 2017
    

Formula

Sum_{k=1..n} a(k) = A069201(n).
Multiplicative with a(p)=2, a(p^e)=0, e > 1.
a(n) = A034444(n)*A008966(n). - R. J. Mathar, Apr 15 2011
Sum_{n>0} a(n)/n^s = Product_{p prime} (1 + 2p^(-s)). - Ralf Stephan, Jul 07 2013
a(n) = abs(A226177(n)). - Antti Karttunen, Jul 23 2017
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)). - Vaclav Kotesovec, Aug 20 2021

Extensions

Additional comments from Vladeta Jovovic, Dec 30 2002

A069201 a(n) = Sum_{k=1..n} mu(k)^2 * 2^omega(k) where omega(k) is the number of distinct primes in the factorization of k.

Original entry on oeis.org

1, 3, 5, 5, 7, 11, 13, 13, 13, 17, 19, 19, 21, 25, 29, 29, 31, 31, 33, 33, 37, 41, 43, 43, 43, 47, 47, 47, 49, 57, 59, 59, 63, 67, 71, 71, 73, 77, 81, 81, 83, 91, 93, 93, 93, 97, 99, 99, 99, 99, 103, 103, 105, 105, 109, 109, 113, 117, 119, 119, 121, 125, 125, 125, 129, 137
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2002

Keywords

References

  • G. Tenenbaum and Jie Wu, Cours Spécialisés No. 2: "Théorie analytique et probabiliste des nombres", Collection SMF, Ordres moyens, p. 20.

Crossrefs

Partial sums of A074823.

Programs

  • Magma
    [&+[MoebiusMu(k)^2*#Divisors(k):k in [1..n]]: n in [1..66]]; // Marius A. Burtea, Jul 27 2019
  • Maple
    with(numtheory): seq(add(tau(k)*mobius(k)^2, k=1..n), n=1..90); # Ridouane Oudra, Jul 25 2019
  • Mathematica
    Accumulate @ Table[MoebiusMu[n]^2 * 2^PrimeNu[n], {n, 1, 66}] (* Amiram Eldar, May 24 2020 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)^2*2^omega(k)); \\ Michel Marcus, Jul 23 2017
    
  • Scheme
    (define (A069201 n) (if (= 1 n) n (+ (A074823 n) (A069201 (- n 1))))) ;; Antti Karttunen, Jul 23 2017
    

Formula

Asymptotic formula: a(n) = C*n*log(n) + O(n) with C = Product_{p prime} (1 - 1/p)^2*(1 + 2/p).
The constant C is A065473. - Amiram Eldar, May 24 2020
a(n) = Sum_{k=1..n} mu(k)^2*d(k), where d is the number of divisors function (A000005). - Ridouane Oudra, Jul 25 2019
More precise asymptotics: Let f(s) = Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)), then a(n) ~ n*(f(1)*(log(n) + 2*gamma - 1) + f'(1)), where f(1) = A065473, f'(1) = f(1) * Sum_{primes p} 6*log(p)/(p^2 + p - 2) = 0.802323384763097462846799913287578352653695442033314074501634920897596526... and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 20 2021

A351521 Dirichlet g.f.: Product_{p prime} (1 + 4*p^(-s)).

Original entry on oeis.org

1, 4, 4, 0, 4, 16, 4, 0, 0, 16, 4, 0, 4, 16, 16, 0, 4, 0, 4, 0, 16, 16, 4, 0, 0, 16, 0, 0, 4, 64, 4, 0, 16, 16, 16, 0, 4, 16, 16, 0, 4, 64, 4, 0, 0, 16, 4, 0, 0, 0, 16, 0, 4, 0, 16, 0, 16, 16, 4, 0, 4, 16, 0, 0, 16, 64, 4, 0, 16, 64, 4, 0, 4, 16, 0, 0, 16, 64
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 17 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n]^2 * 4^PrimeNu[n], {n, 1, 100}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 4*X))[n], ", "))

Formula

Dirichlet g.f.: zeta(s)^4 * Product_{prime p} (1 + (4 - 15*p^s + 20*p^(2*s) - 10*p^(3*s))/p^(5*s)).
a(n) = A008966(n) * A035116(n). - Enrique Pérez Herrero, Oct 27 2022
Multiplicative with a(p) = 4, and a(p^e) = 0 for e >= 2. - Amiram Eldar, Dec 25 2022

A349924 Dirichlet g.f.: Product_{k>=2} (1 + 3 * k^(-s)).

Original entry on oeis.org

1, 3, 3, 3, 3, 12, 3, 12, 3, 12, 3, 21, 3, 12, 12, 12, 3, 21, 3, 21, 12, 12, 3, 57, 3, 12, 12, 21, 3, 57, 3, 21, 12, 12, 12, 57, 3, 12, 12, 57, 3, 57, 3, 21, 21, 12, 3, 93, 3, 21, 12, 21, 3, 57, 12, 57, 12, 12, 3, 129, 3, 12, 21, 48, 12, 57, 3, 21, 12, 57
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 05 2021

Keywords

Crossrefs

Showing 1-5 of 5 results.