cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 86 results. Next

A003968 Möbius transform of A003959.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 18, 12, 10, 11, 18, 13, 14, 15, 54, 17, 24, 19, 30, 21, 22, 23, 54, 30, 26, 48, 42, 29, 30, 31, 162, 33, 34, 35, 72, 37, 38, 39, 90, 41, 42, 43, 66, 60, 46, 47, 162, 56, 60, 51, 78, 53, 96, 55, 126, 57, 58, 59, 90, 61, 62, 84, 486, 65, 66, 67, 102, 69
Offset: 1

Views

Author

Keywords

Comments

a(n) = n for squarefree n; otherwise, a(n) > n. - Ivan Neretin, May 13 2015
Dirichlet inverse of A062953. - Werner Schulte, Oct 25 2018

Crossrefs

Programs

  • Mathematica
    Table[{pp, aa} = Transpose[FactorInteger[n]]; Times @@ (pp*(pp + 1)^(aa - 1)), {n, 70}]  (* Ivan Neretin, May 13 2015 *)
  • PARI
    a(n) = {my(f=factor(n)); for (i=1, #f~, p= f[i, 1]; f[i, 1] = p*(p+1)^(f[i,2]-1); f[i, 2] = 1); factorback(f);} \\ Michel Marcus, Feb 26 2015

Formula

Multiplicative with a(p^e) = p(p+1)^(e-1). - David W. Wilson, Sep 01 2001
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 + 1/(p^3 - p^2 - p)) = A104141/A005596 = 0.8128327996... . - Amiram Eldar, Oct 23 2022

Extensions

More terms from David W. Wilson, Aug 29 2001

A348507 a(n) = A003959(n) - n, where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

0, 1, 1, 5, 1, 6, 1, 19, 7, 8, 1, 24, 1, 10, 9, 65, 1, 30, 1, 34, 11, 14, 1, 84, 11, 16, 37, 44, 1, 42, 1, 211, 15, 20, 13, 108, 1, 22, 17, 122, 1, 54, 1, 64, 51, 26, 1, 276, 15, 58, 21, 74, 1, 138, 17, 160, 23, 32, 1, 156, 1, 34, 65, 665, 19, 78, 1, 94, 27, 74, 1, 360, 1, 40, 69, 104, 19, 90, 1, 406, 175, 44, 1, 204
Offset: 1

Views

Author

Antti Karttunen, Oct 30 2021

Keywords

Comments

a(p*(n/p)) - (n/p) = (p+1)*a(n/p) holds for all prime divisors p of n, which can be seen by expanding the left hand side as (A003959(p*(n/p)) - (p*(n/p))) - (n/p) = (p+1)*A003959(n/p)-((p+1)*(n/p)) = (p+1)*(A003959(n/p)-(n/p)) = (p+1)*a(n/p). This implies that a(n) >= A003415(n) for all n. (See also comments in A348970). - Antti Karttunen, Nov 06 2021

Crossrefs

Cf. A348971 (Möbius transform) and A349139, A349140, A349141, A349142, A349143 (other Dirichlet convolutions).
Cf. also A168065 (the arithmetic mean of this and A322582), A168066.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, Oct 30 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    
  • PARI
    A020639(n) = if(1==n,n,(factor(n)[1, 1]));
    A348507(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= (1+spf)); (s); }; \\ (Compare this with similar programs given in A003415 and in A322582) - Antti Karttunen, Nov 06 2021

Formula

a(n) = A003959(n) - n.
a(n) = A348508(n) + n.
a(n) = A001065(n) + A348029(n).
From Antti Karttunen, Nov 06 2021: (Start)
a(n) = Sum_{d|n} A348971(d).
a(n) = A003415(n) + A348970(n).
For all n >= 1, A322582(n) <= A003415(n) <= a(n).
For n > 1, a(n) = a(A032742(n))*(1+A020639(n)) + A032742(n). [See the comments above, and compare this with Reinhard Zumkeller's May 09 2011 recursive formula for A003415] (End)
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065488 - 1. - Amiram Eldar, Jun 01 2025

A348029 a(n) = A003959(n) - sigma(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 12, 3, 0, 0, 8, 0, 0, 0, 50, 0, 9, 0, 12, 0, 0, 0, 48, 5, 0, 24, 16, 0, 0, 0, 180, 0, 0, 0, 53, 0, 0, 0, 72, 0, 0, 0, 24, 18, 0, 0, 200, 7, 15, 0, 28, 0, 72, 0, 96, 0, 0, 0, 48, 0, 0, 24, 602, 0, 0, 0, 36, 0, 0, 0, 237, 0, 0, 20, 40, 0, 0, 0, 300, 135, 0, 0, 64, 0, 0, 0, 144, 0, 54, 0, 48, 0
Offset: 1

Views

Author

Antti Karttunen, Oct 20 2021

Keywords

Comments

Inverse Möbius transform of A348030.

Crossrefs

Cf. A000203, A003959, A005117 (positions of zeros), A013661, A065488, A348030.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - DivisorSigma[1, n]; Array[a, 100] (* Amiram Eldar, Oct 20 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348029(n) = (A003959(n)-sigma(n));

Formula

a(n) = A003959(n) - A000203(n).
a(n) = Sum_{d|n} A348030(d).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p^2-p-1)) - Pi^2/6 = A065488 - A013661 = 1.0291786... . - Amiram Eldar, May 29 2025

A348970 a(n) = A003959(n) - A129283(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A129283(n) is sum of n and its arithmetic derivative.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 7, 1, 1, 0, 8, 0, 1, 1, 33, 0, 9, 0, 10, 1, 1, 0, 40, 1, 1, 10, 12, 0, 11, 0, 131, 1, 1, 1, 48, 0, 1, 1, 54, 0, 13, 0, 16, 12, 1, 0, 164, 1, 13, 1, 18, 0, 57, 1, 68, 1, 1, 0, 64, 0, 1, 14, 473, 1, 17, 0, 22, 1, 15, 0, 204, 0, 1, 14, 24, 1, 19, 0, 230, 67, 1, 0, 80, 1, 1, 1, 96, 0, 75, 1, 28
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Comments

There are no negative terms. We prove this by induction over the prime factorization of n, showing that A348507(n) >= A003415(n) for all values of n >= 1. At n=1, both sequences have value 0, and at the primes both sequences obtain the value 1, so the base cases hold. We know that A348507(n)-(n/p) = (p+1)*A348507(n/p) for all prime factors p of n (see comment in A348507). With the arithmetic derivative we obtain respectively that A003415(n) = A003415(p*(n/p)) = A003415(p)*(n/p) + p*A003415(n/p) = (n/p) + p*A003415(n/p), for any prime factor p of n. Now A348507(p*(n/p)) >= A003415(p*(n/p)) iff A348507(p*(n/p)) - (n/p) >= A003415(p*(n/p)) - (n/p), that is, iff (p+1)*A348507(n/p) >= p*A003415(n/p), which indeed follows by the induction hypothesis, which assumes that A348507(x) >= A003415(x) for all proper divisors x of n.

Crossrefs

Cf. A008578 (positions of zeros), A001358 (positions of ones).

Programs

  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); f[p_, e_] := (p + 1)^e; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n - d[n]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348970(n) = (A003959(n) - (n+A003415(n)));

Formula

a(n) = A003959(n) - A129283(n) = A003959(n) - (n+A003415(n)).
a(n) = A348029(n) - A211991(n).
a(n) = A348507(n) - A003415(n).
For all n >= 1, a(A001358(n)) = 1.

A348733 a(n) = gcd(A003959(n), A034448(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and A034448 (usigma) is multiplicative with a(p^e) = (p^e)+1.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 9, 2, 18, 12, 4, 14, 24, 24, 1, 18, 6, 20, 6, 32, 36, 24, 36, 2, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 2, 38, 60, 56, 54, 42, 96, 44, 12, 12, 72, 48, 4, 2, 6, 72, 14, 54, 12, 72, 72, 80, 90, 60, 24, 62, 96, 16, 1, 84, 144, 68, 18, 96, 144, 72, 18, 74, 114, 8, 20, 96, 168, 80, 6, 2, 126, 84, 32
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 1444 = 2^2 * 19^2, where a(1444) = 10 != 1*2 = a(4)*a(361). See A348740 for the list of such positions.

Crossrefs

Cf. also A344695, A348047, A348503, A348946 for similar, almost multiplicative sequences.

Programs

  • Mathematica
    f1[p_, e_] := (p + 1)^e; f2[p_, e_] := p^e + 1; a[1] = 1; a[n_] := GCD[Times @@ f1 @@@ (f = FactorInteger[n]), Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A348733(n) = gcd(A003959(n), A034448(n));

Formula

a(n) = gcd(A003959(n), A034448(n)).
a(n) = gcd(A003959(n), A348732(n)) = gcd(A034448(n), A348732(n)).
a(n) = A003959(n) / A348734(n) = A034448(n) / A348735(n).

A349173 Dirichlet convolution of A003415 with A003959, where A003415 is the arithmetic derivative and A003959 is fully multiplicative with a(p) = (p+1).

Original entry on oeis.org

0, 1, 1, 7, 1, 12, 1, 33, 10, 16, 1, 68, 1, 20, 18, 131, 1, 87, 1, 96, 22, 28, 1, 296, 16, 32, 67, 124, 1, 167, 1, 473, 30, 40, 26, 449, 1, 44, 34, 428, 1, 215, 1, 180, 147, 52, 1, 1128, 22, 171, 42, 208, 1, 510, 34, 560, 46, 64, 1, 881, 1, 68, 187, 1611, 38, 311, 1, 264, 54, 295, 1, 1871, 1, 80, 203, 292, 38, 359
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := e/p; f2[p_, e_] := (p + 1)^e; a1[1] = 0; a1[n_] := n*Plus @@ (f1 @@@ FactorInteger[n]); a2[1] = 1; a2[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, a1[#] * a2[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A349173(n) = sumdiv(n,d,A003415(d)*A003959(n/d));

Formula

a(n) = Sum_{d|n} A003415(d) * A003959(n/d).
a(n) = Sum_{d|n} A349133(d) * A349356(n/d). - Antti Karttunen, Nov 16 2021
For all n >= 1, a(n) >= A349133(n).

A348047 a(n) = gcd(sigma(n), A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 8, 8, 30, 72, 32, 9, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 24, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 3, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32
Offset: 1

Views

Author

Antti Karttunen, Oct 21 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 196 = 4*49, where a(196) = 3, although a(4) = 1 and a(49) = 4.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := GCD[Times @@ f @@@ FactorInteger[n], DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Oct 21 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348047(n) = gcd(sigma(n), A003959(n));

Formula

a(n) = gcd(A000203(n), A003959(n)).
a(n) = gcd(A000203(n), A348029(n)) = gcd(A003959(n), A348029(n)).
a(n) = A000203(n)/ A348048(n) = A003959(n) / A348049(n).

A349140 a(n) = Sum_{d|n} d * A348507(n/d), where A348507(n) = A003959(n) - n, where A003959 is fully multiplicative with a(p) = (p+1).

Original entry on oeis.org

0, 1, 1, 7, 1, 11, 1, 33, 10, 15, 1, 61, 1, 19, 17, 131, 1, 77, 1, 89, 21, 27, 1, 263, 16, 31, 67, 117, 1, 145, 1, 473, 29, 39, 25, 379, 1, 43, 33, 395, 1, 189, 1, 173, 137, 51, 1, 997, 22, 155, 41, 201, 1, 443, 33, 527, 45, 63, 1, 743, 1, 67, 177, 1611, 37, 277, 1, 257, 53, 265, 1, 1541, 1, 79, 187, 285, 37, 321
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A348507 with the identity function, A000027.
Dirichlet convolution of sigma with A348971.

Crossrefs

Cf. also A347130, A348980.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; a[n_] := DivisorSum[n, #*s[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    A349140(n) = sumdiv(n,d,d*A348507(n/d));

Formula

a(n) = Sum_{d|n} d * A348507(n/d).
a(n) = Sum_{d|n} A000203(d) * A348971(n/d).
a(n) = Sum_{d|n} A349141(d).
For all n >= 1, a(n) >= A347130(n) >= A348980(n).
a(n) = A349170(n) - A038040(n). - Antti Karttunen, Nov 15 2021

A349141 a(n) = Sum_{d|n} phi(n/d) * A348507(d), where A348507(n) = A003959(n) - n, and A003959 is fully multiplicative with a(p) = (p+1).

Original entry on oeis.org

0, 1, 1, 6, 1, 9, 1, 26, 9, 13, 1, 44, 1, 17, 15, 98, 1, 57, 1, 68, 19, 25, 1, 176, 15, 29, 57, 92, 1, 105, 1, 342, 27, 37, 23, 252, 1, 41, 31, 280, 1, 141, 1, 140, 111, 49, 1, 636, 21, 125, 39, 164, 1, 309, 31, 384, 43, 61, 1, 480, 1, 65, 147, 1138, 35, 213, 1, 212, 51, 209, 1, 960, 1, 77, 155, 236, 35, 249, 1, 1028
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of Euler phi (A000010) with A348507.
Möbius transform of A349140.

Crossrefs

Cf. A000010, A003959, A008683, A018804, A348507, A349140 (inverse Möbius transform), A349142, A349143, A349171.
Cf. also A347131, A348981.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (s[#] - #) * EulerPhi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    A349141(n) = sumdiv(n,d,eulerphi(d)*A348507(n/d));

Formula

a(n) = Sum_{d|n} A000010(n/d) * A348507(d).
a(n) = Sum_{d|n} A008683(n/d) * A349140(d).
a(n) = Sum_{k=1..n} A348507(gcd(n,k)).
For all n >= 1, a(n) >= A347131(n) >= A348981(n).
a(n) = A349171(n) - A018804(n). - Antti Karttunen, Nov 14 2021

A349142 a(n) = Sum_{d|n} psi(n/d) * A348507(d), where psi is Dedekind psi (A001615), A348507(n) = A003959(n) - n, and A003959 is fully multiplicative with a(p) = (p+1).

Original entry on oeis.org

0, 1, 1, 8, 1, 13, 1, 40, 11, 17, 1, 80, 1, 21, 19, 164, 1, 99, 1, 112, 23, 29, 1, 364, 17, 33, 77, 144, 1, 191, 1, 604, 31, 41, 27, 528, 1, 45, 35, 524, 1, 243, 1, 208, 165, 53, 1, 1424, 23, 187, 43, 240, 1, 597, 35, 684, 47, 65, 1, 1072, 1, 69, 209, 2084, 39, 347, 1, 304, 55, 327, 1, 2244, 1, 81, 221, 336, 39, 399
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A001615 with A348507.

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p + 1)*p^(e - 1); psi[1] = 1; psi[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := (p + 1)^e; s[1] = 1; s[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (s[#] - #)*psi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    A349142(n) = sumdiv(n,d,A001615(d)*A348507(n/d));

Formula

a(n) = Sum_{d|n} A001615(n/d) * A348507(d).
For all n >= 1, a(n) >= A347132(n) >= A348982(n).
a(n) = A349172(n) - A327251(n). - Antti Karttunen, Nov 14 2021
Showing 1-10 of 86 results. Next