cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A348507 a(n) = A003959(n) - n, where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

0, 1, 1, 5, 1, 6, 1, 19, 7, 8, 1, 24, 1, 10, 9, 65, 1, 30, 1, 34, 11, 14, 1, 84, 11, 16, 37, 44, 1, 42, 1, 211, 15, 20, 13, 108, 1, 22, 17, 122, 1, 54, 1, 64, 51, 26, 1, 276, 15, 58, 21, 74, 1, 138, 17, 160, 23, 32, 1, 156, 1, 34, 65, 665, 19, 78, 1, 94, 27, 74, 1, 360, 1, 40, 69, 104, 19, 90, 1, 406, 175, 44, 1, 204
Offset: 1

Views

Author

Antti Karttunen, Oct 30 2021

Keywords

Comments

a(p*(n/p)) - (n/p) = (p+1)*a(n/p) holds for all prime divisors p of n, which can be seen by expanding the left hand side as (A003959(p*(n/p)) - (p*(n/p))) - (n/p) = (p+1)*A003959(n/p)-((p+1)*(n/p)) = (p+1)*(A003959(n/p)-(n/p)) = (p+1)*a(n/p). This implies that a(n) >= A003415(n) for all n. (See also comments in A348970). - Antti Karttunen, Nov 06 2021

Crossrefs

Cf. A348971 (Möbius transform) and A349139, A349140, A349141, A349142, A349143 (other Dirichlet convolutions).
Cf. also A168065 (the arithmetic mean of this and A322582), A168066.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, Oct 30 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    
  • PARI
    A020639(n) = if(1==n,n,(factor(n)[1, 1]));
    A348507(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= (1+spf)); (s); }; \\ (Compare this with similar programs given in A003415 and in A322582) - Antti Karttunen, Nov 06 2021

Formula

a(n) = A003959(n) - n.
a(n) = A348508(n) + n.
a(n) = A001065(n) + A348029(n).
From Antti Karttunen, Nov 06 2021: (Start)
a(n) = Sum_{d|n} A348971(d).
a(n) = A003415(n) + A348970(n).
For all n >= 1, A322582(n) <= A003415(n) <= a(n).
For n > 1, a(n) = a(A032742(n))*(1+A020639(n)) + A032742(n). [See the comments above, and compare this with Reinhard Zumkeller's May 09 2011 recursive formula for A003415] (End)
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065488 - 1. - Amiram Eldar, Jun 01 2025

A348971 a(n) = Product(p*(p+1)^(e-1)) - Product((p-1)*p^(e-1)), when n = Product(p^e), with p primes, and e their exponents.

Original entry on oeis.org

0, 1, 1, 4, 1, 4, 1, 14, 6, 6, 1, 14, 1, 8, 7, 46, 1, 18, 1, 22, 9, 12, 1, 46, 10, 14, 30, 30, 1, 22, 1, 146, 13, 18, 11, 60, 1, 20, 15, 74, 1, 30, 1, 46, 36, 24, 1, 146, 14, 40, 19, 54, 1, 78, 15, 102, 21, 30, 1, 74, 1, 32, 48, 454, 17, 46, 1, 70, 25, 46, 1, 192, 1, 38, 50, 78, 17, 54, 1, 238, 138, 42, 1, 102, 21
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Comments

Möbius transform of A348507.

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := p*(p + 1)^(e - 1); f2[p_, e_] := (p - 1)*p^(e - 1); a[1] = 0; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A348971(n) = { my(f=factor(n),m1=1,m2=1,p); for(i=1, #f~, p = f[i, 1]; m1 *= p*(p+1)^(f[i, 2]-1); m2 *= (p-1)*p^(f[i, 2]-1)); (m1-m2); };
    
  • PARI
    A348971(n) = { my(f=factor(n),p); for (i=1, #f~, p = f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f)-eulerphi(n); }

Formula

a(n) = A003968(n) - A000010(n).
a(n) = Sum_{d|n} A008683(n/d) * A348507(d).
Sum_{k=1..n} a(k) ~ c * n^2, where c = A104141 * (1/A005596 - 1) = 0.5088692487... . - Amiram Eldar, Oct 05 2023

A348976 Möbius transform of A129283, which is sum of n and its arithmetic derivative.

Original entry on oeis.org

1, 2, 3, 5, 5, 5, 7, 12, 11, 9, 11, 12, 13, 13, 14, 28, 17, 17, 19, 22, 20, 21, 23, 28, 29, 25, 39, 32, 29, 22, 31, 64, 32, 33, 34, 40, 37, 37, 38, 52, 41, 32, 43, 52, 50, 45, 47, 64, 55, 49, 50, 62, 53, 57, 54, 76, 56, 57, 59, 52, 61, 61, 72, 144, 64, 52, 67, 82, 68, 58, 71, 92, 73, 73, 78, 92, 76, 62, 79, 120
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := e/p; d[1] = 1; d[n_] := n*(1 + Plus @@ f @@@ FactorInteger[n]); a[n_] := DivisorSum[n, MoebiusMu[#]*d[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 13 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A129283(n) = (n+A003415(n));
    A348976(n) = sumdiv(n,d,moebius(n/d)*A129283(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A129283(d).
a(n) = A000010(n) + A300251(n).

A348972 a(n) = gcd(A003959(n), A129283(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and A129283(n) is sum of n and its arithmetic derivative.

Original entry on oeis.org

1, 3, 4, 1, 6, 1, 8, 1, 1, 1, 12, 4, 14, 1, 1, 3, 18, 3, 20, 2, 1, 1, 24, 4, 1, 1, 2, 12, 30, 1, 32, 1, 1, 1, 1, 48, 38, 1, 1, 54, 42, 1, 44, 4, 12, 1, 48, 4, 1, 1, 1, 18, 54, 3, 1, 4, 1, 1, 60, 8, 62, 1, 2, 1, 1, 1, 68, 2, 1, 3, 72, 12, 74, 1, 2, 12, 1, 1, 80, 2, 1, 1, 84, 16, 1, 1, 1, 12, 90, 3, 1, 4, 1, 1, 1, 4, 98
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := e/p; f2[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := GCD[n*(1 + Plus @@ f1 @@@ (f = FactorInteger[n])), Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348972(n) = gcd(A003959(n),(n+A003415(n)));

Formula

a(n) = gcd(A003959(n), A129283(n)) = gcd(A003959(n), n+A003415(n)).
a(n) = gcd(A003959(n), A348970(n)) = gcd(A129283(n), A348970(n)).
a(n) = A129283(n) / A348973(n) = A003959(n) / A348974(n).

A348973 Numerator of ratio A129283(n) / A003959(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A129283(n) is sum of n and its arithmetic derivative.

Original entry on oeis.org

1, 1, 1, 8, 1, 11, 1, 20, 15, 17, 1, 7, 1, 23, 23, 16, 1, 13, 1, 22, 31, 35, 1, 17, 35, 41, 27, 5, 1, 61, 1, 112, 47, 53, 47, 2, 1, 59, 55, 2, 1, 83, 1, 23, 7, 71, 1, 40, 63, 95, 71, 6, 1, 45, 71, 37, 79, 89, 1, 19, 1, 95, 57, 256, 83, 127, 1, 70, 95, 43, 1, 19, 1, 113, 65, 13, 95, 149, 1, 128, 189, 125, 1, 13, 107
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Comments

It is known that A129283(n) <= A003959(n) for all n (see A348970 for a proof), which implies that each ratio a(n)/A348974(n) is at most 1: 1/1, 1/1, 1/1, 8/9, 1/1, 11/12, 1/1, 20/27, 15/16, 17/18, 1/1, 7/9, 1/1, 23/24, 23/24, 16/27, 1/1, 13/16, 1/1, 22/27, 31/32, 35/36, 1/1, 17/27, 35/36, 41/42, 27/32, 5/6, 1/1, 61/72, 1/1, 112/243, etc.

Crossrefs

Cf. A003415, A003959, A129283, A348970, A348972, A348974 (denominators).
Cf. also A345059.

Programs

  • Mathematica
    f1[p_, e_] := e/p; f2[p_, e_] := (p + 1)^e; a[n_] := Numerator[n*(1 + Plus @@ f1 @@@ (f = FactorInteger[n]))/Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348973(n) = { my(u=n+A003415(n)); (u/gcd(A003959(n),u)); };

Formula

a(n) = A129283(n) / A348972(n) = A129283(n) / gcd(A003959(n), A129283(n)).

A348974 Denominator of ratio A129283(n) / A003959(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A129283(n) is sum of n and its arithmetic derivative.

Original entry on oeis.org

1, 1, 1, 9, 1, 12, 1, 27, 16, 18, 1, 9, 1, 24, 24, 27, 1, 16, 1, 27, 32, 36, 1, 27, 36, 42, 32, 6, 1, 72, 1, 243, 48, 54, 48, 3, 1, 60, 56, 3, 1, 96, 1, 27, 8, 72, 1, 81, 64, 108, 72, 7, 1, 64, 72, 54, 80, 90, 1, 27, 1, 96, 64, 729, 84, 144, 1, 81, 96, 48, 1, 36, 1, 114, 72, 15, 96, 168, 1, 243, 256, 126, 1, 18, 108
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Crossrefs

Cf. A003415, A003959, A129283, A348970, A348972, A348973 (numerators).
Cf. also A343227.

Programs

  • Mathematica
    f1[p_, e_] := e/p; f2[p_, e_] := (p + 1)^e; a[n_] := Denominator[n*(1 + Plus @@ f1 @@@ (f = FactorInteger[n]))/Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348974(n) = { my(s=A003959(n)); (s/gcd(s,(n+A003415(n)))); };

Formula

a(n) = A003959(n) / A348972(n) = A003959(n) / gcd(A003959(n), A129283(n)).

A348508 a(n) = A003959(n) - 2*n, where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

-1, -1, -2, 1, -4, 0, -6, 11, -2, -2, -10, 12, -12, -4, -6, 49, -16, 12, -18, 14, -10, -8, -22, 60, -14, -10, 10, 16, -28, 12, -30, 179, -18, -14, -22, 72, -36, -16, -22, 82, -40, 12, -42, 20, 6, -20, -46, 228, -34, 8, -30, 22, -52, 84, -38, 104, -34, -26, -58, 96, -60, -28, 2, 601, -46, 12, -66, 26, -42, 4, -70, 288
Offset: 1

Views

Author

Antti Karttunen, Oct 30 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = -1; a[n_] := Times @@ f @@@ FactorInteger[n] - 2*n; Array[a, 100] (* Amiram Eldar, Oct 30 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348508(n) = (A003959(n) - 2*n);

Formula

a(n) = A003959(n) - 2*n.
a(n) = A348507(n) - n.
a(n) = A348029(n) - A033879(n).
From Antti Karttunen, Dec 05 2021: (Start)
a(n) = A168036(n) + A348970(n).
For all n >= 1, a(A138636(n)) = 12.
(End)
a(p) = 1 - p if p prime. - Bernard Schott, Feb 17 2022

A348975 a(n) = A003415(n) + A003958(n) - n, where A003415 is the arithmetic derivative and A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 5, 1, 1, 0, 6, 0, 1, 1, 17, 0, 7, 0, 8, 1, 1, 0, 22, 1, 1, 8, 10, 0, 9, 0, 49, 1, 1, 1, 28, 0, 1, 1, 32, 0, 11, 0, 14, 10, 1, 0, 66, 1, 11, 1, 16, 0, 35, 1, 42, 1, 1, 0, 40, 0, 1, 12, 129, 1, 15, 0, 20, 1, 13, 0, 88, 0, 1, 12, 22, 1, 17, 0, 100, 43, 1, 0, 52, 1, 1, 1, 62, 0, 49, 1, 26, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

No negative terms. See comments in A322582.
This is the difference between the arithmetic derivative of n [= A003415(n)] and its guaranteed lower bound A322582(n) [= n - A003958(n)].

Crossrefs

Cf. also A348970 for the corresponding difference from a guaranteed upper bound.

Programs

  • Mathematica
    MapAt[# + 1 &, Array[If[# < 2, 0, # Total[#2/#1 & @@@ #2]] + Times @@ Map[(#1 - 1)^#2 & @@ # &, #2] - #1 & @@ {#, FactorInteger[#]} &, 95], 1] (* Michael De Vlieger, Mar 15 2022 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348975(n) = (A003415(n) - A322582(n));

Formula

a(n) = A003415(n) - A322582(n).
a(n) = A003958(n) + A168036(n).
Showing 1-8 of 8 results.