cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A003959 If n = Product p(k)^e(k) then a(n) = Product (p(k)+1)^e(k), a(1) = 1.

Original entry on oeis.org

1, 3, 4, 9, 6, 12, 8, 27, 16, 18, 12, 36, 14, 24, 24, 81, 18, 48, 20, 54, 32, 36, 24, 108, 36, 42, 64, 72, 30, 72, 32, 243, 48, 54, 48, 144, 38, 60, 56, 162, 42, 96, 44, 108, 96, 72, 48, 324, 64, 108, 72, 126, 54, 192, 72, 216, 80, 90, 60, 216, 62, 96, 128, 729, 84, 144, 68
Offset: 1

Views

Author

Keywords

Comments

Completely multiplicative.
Sum of divisors of n with multiplicity. If n = p^m, the number of ways to make p^k as a divisor of n is C(m,k); and sum(C(m,k)*p^k) = (p+1)^k. The rest follows because the function is multiplicative. - Franklin T. Adams-Watters, Jan 25 2010

Crossrefs

Programs

  • Haskell
    a003959 1 = 1
    a003959 n = product $ map (+ 1) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012
  • Maple
    a:= n-> mul((i[1]+1)^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]]+1)^fi[[All, 2]])); a /@ Range[67] (* Jean-François Alcover, Apr 22 2011 *)
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X-p*X))[n]) /* Ralf Stephan */
    

Formula

Multiplicative with a(p^e) = (p+1)^e. - David W. Wilson, Aug 01 2001
Sum_{n>0} a(n)/n^s = Product_{p prime} 1/(1-p^(-s)-p^(1-s)) (conjectured). - Ralf Stephan, Jul 07 2013
This follows from the absolute convergence of the sum (compare with a(n) = n^2) and the Euler product for completely multiplicative functions. Convergence occurs for at least Re(s)>3. - Thomas Anton, Jul 15 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065488/2 = 1/(2*A005596) = 1.3370563627850107544802059152227440187511993141988459926... - Vaclav Kotesovec, Jul 17 2021
From Thomas Scheuerle, Jul 19 2021: (Start)
a(n) = gcd(A166642(n), A166643(n)).
a(n) = A166642(n)/A061142(n).
a(n) = A166643(n)/A165824(n).
a(n) = A166644(n)/A165825(n).
a(n) = A166645(n)/A165826(n).
a(n) = A166646(n)/A165827(n).
a(n) = A166647(n)/A165828(n).
a(n) = A166649(n)/A165830(n).
a(n) = A166650(n)/A165831(n).
a(n) = A167351(n)/A166590(n). (End)
Dirichlet g.f.: zeta(s-1) * Product_{primes p} (1 + 1/(p^s - p - 1)). - Vaclav Kotesovec, Aug 22 2021

Extensions

Definition reedited (with formula) by Daniel Forgues, Nov 17 2009

A299150 Denominators of the positive solution to n = Sum_{d|n} a(d) * a(n/d).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 8, 2, 2, 4, 2, 2, 4, 8, 2, 8, 2, 4, 4, 2, 2, 4, 8, 2, 16, 4, 2, 4, 2, 8, 4, 2, 4, 16, 2, 2, 4, 4, 2, 4, 2, 4, 16, 2, 2, 16, 8, 8, 4, 4, 2, 16, 4, 4, 4, 2, 2, 8, 2, 2, 16, 16, 4, 4, 2, 4, 4, 4, 2, 16, 2, 2, 16, 4, 4, 4, 2, 16, 128, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2018

Keywords

Examples

			Sequence begins: 1, 1, 3/2, 3/2, 5/2, 3/2, 7/2, 5/2, 27/8, 5/2, 11/2, 9/4, 13/2, 7/2.
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    sys=Table[n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
    Denominator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
    f[p_, e_] := 2^((1 + Mod[p, 2])*e - DigitCount[e, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n)={my(v=factor(n)[,2]); denominator(n*prod(i=1, #v, my(e=v[i]); binomial(2*e, e)/4^e))} \\ Andrew Howroyd, Aug 09 2018
    
  • PARI
    A299150(n) = { my(f = factor(n), m=1); for(i=1, #f~, m *= 2^(((1+(f[i,1]%2))*f[i,2]) - hammingweight(f[i,2]))); (m); }; \\ Antti Karttunen, Sep 03 2018
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-p*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 08 2025

Formula

a(n) = denominator(n*A317848(n)/A165825(n)) = A165825(n)/(A037445(n) * A006519(n)). - Andrew Howroyd, Aug 09 2018
a(n) = A046644(n)/A006519(n). - Andrew Howroyd and Antti Karttunen, Aug 30 2018
From Antti Karttunen, Sep 03 2018: (Start)
a(n) = 2^A318440(n).
Multiplicative with a(2^e) = 2^A011371(e), a(p^e) = 2^A005187(e) for odd primes p.
Multiplicative with a(p^e) = 2^(((1+A000035(p))*e)-A000120(e)) for all primes p.
(End)

Extensions

Keyword:mult added by Andrew Howroyd, Aug 09 2018

A299149 Numerators of the positive solution to n = Sum_{d|n} a(d) * a(n/d).

Original entry on oeis.org

1, 1, 3, 3, 5, 3, 7, 5, 27, 5, 11, 9, 13, 7, 15, 35, 17, 27, 19, 15, 21, 11, 23, 15, 75, 13, 135, 21, 29, 15, 31, 63, 33, 17, 35, 81, 37, 19, 39, 25, 41, 21, 43, 33, 135, 23, 47, 105, 147, 75, 51, 39, 53, 135, 55, 35, 57, 29, 59, 45, 61, 31, 189, 231, 65, 33
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2018

Keywords

Comments

Dirichlet convolution of a(n)/A046644(n) with itself yields A000265. - Antti Karttunen, Aug 30 2018

Examples

			Sequence begins: 1, 1, 3/2, 3/2, 5/2, 3/2, 7/2, 5/2, 27/8, 5/2, 11/2, 9/4, 13/2, 7/2.
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    sys=Table[n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
    Numerator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
    odd[n_] := n/2^IntegerExponent[n, 2]; f[p_, e_] := odd[p^e*Binomial[2*e, e]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
  • PARI
    a(n)={my(v=factor(n)[,2]); numerator(n*prod(i=1, #v, my(e=v[i]); binomial(2*e, e)/4^e))} \\ Andrew Howroyd, Aug 09 2018
    
  • PARI
    \\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u).
    DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dAndrew Howroyd, Aug 09 2018
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-p*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = numerator(n*A317848(n)/A165825(n)) = A000265(n*A317848(n)). - Andrew Howroyd, Aug 09 2018
Sum_{k=1..n} A299149(k)/A299150(k) ~ n^2 / (2*sqrt(Pi*log(n))) * (1 + (1-gamma) / (4*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 09 2025

Extensions

Keyword:mult added by Andrew Howroyd, Aug 09 2018

A165826 Totally multiplicative sequence with a(p) = 5.

Original entry on oeis.org

1, 5, 5, 25, 5, 25, 5, 125, 25, 25, 5, 125, 5, 25, 25, 625, 5, 125, 5, 125, 25, 25, 5, 625, 25, 25, 125, 125, 5, 125, 5, 3125, 25, 25, 25, 625, 5, 25, 25, 625, 5, 125, 5, 125, 125, 25, 5, 3125, 25, 125
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Crossrefs

Programs

  • Mathematica
    5^PrimeOmega[Range[100]] (* G. C. Greubel, Apr 09 2016 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-5*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 28 2023

Formula

a(n) = A000351(A001222(n)) = 5^bigomega(n) = 5^A001222(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 5 * p^(-s)). - Ilya Gutkovskiy, Oct 30 2019

A166634 Totally multiplicative sequence with a(p) = 4*(p-1) for prime p.

Original entry on oeis.org

1, 4, 8, 16, 16, 32, 24, 64, 64, 64, 40, 128, 48, 96, 128, 256, 64, 256, 72, 256, 192, 160, 88, 512, 256, 192, 512, 384, 112, 512, 120, 1024, 320, 256, 384, 1024, 144, 288, 384, 1024, 160, 768, 168, 640, 1024, 352, 184, 2048, 576, 1024
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2009

Keywords

Crossrefs

Programs

  • Mathematica
    DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] :=
    DirichletInverse[f][n] = -1/f[1]*Sum[f[n/d]*DirichletInverse[f][d], {d, Most[Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; a[m_] := DirichletInverse[muphi][m]; Table[a[m]*4^(PrimeOmega[m]), {m, 1, 100}] (* G. C. Greubel, May 20 2016 *)
    f[p_, e_] := (4*(p-1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 17 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = 4*(f[k,1]-1)); factorback(f);} \\ Michel Marcus, May 20 2016

Formula

Multiplicative with a(p^e) = (4*(p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (4*(p(k)-1))^e(k).
a(n) = A165825(n) * A003958(n) = 4^bigomega(n) * A003958(n) = 4^A001222(n) * A003958(n).

A317848 Multiplicative with a(p^e) = binomial(2*e, e).

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 20, 6, 4, 2, 12, 2, 4, 4, 70, 2, 12, 2, 12, 4, 4, 2, 40, 6, 4, 20, 12, 2, 8, 2, 252, 4, 4, 4, 36, 2, 4, 4, 40, 2, 8, 2, 12, 12, 4, 2, 140, 6, 12, 4, 12, 2, 40, 4, 40, 4, 4, 2, 24, 2, 4, 12, 924, 4, 8, 2, 12, 4, 8, 2, 120, 2, 4, 12, 12, 4, 8, 2, 140
Offset: 1

Views

Author

Andrew Howroyd, Aug 08 2018

Keywords

Comments

The Dirichlet convolution square of this sequence is A165825.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Binomial[2*e, e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
  • PARI
    a(n)={my(v=factor(n)[,2]); prod(i=1, #v, binomial(2*v[i], v[i]))}
    
  • PARI
    \\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u).
    DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
    				
  • PARI
    A317848(n) = factorback(apply(e -> binomial(e+e,e),factor(n)[,2])); \\ Antti Karttunen, Sep 17 2018

Formula

A037445(n) = A006519(a(n)).
A046643(n) = numerator(a(n)/A165825(n)) = A000265(a(n)).
A046644(n) = denominator(a(n)/A165825(n)) = A165825(n)/A037445(n).
A299149(n) = numerator(n*a(n)/A165825(n)) = A000265(n*a(n)).
A299150(n) = denominator(n*a(n)/A165825(n)) = A165825(n)/(A037445(n) * A006519(n)).

A166644 Totally multiplicative sequence with a(p) = 4*(p+1) for prime p.

Original entry on oeis.org

1, 12, 16, 144, 24, 192, 32, 1728, 256, 288, 48, 2304, 56, 384, 384, 20736, 72, 3072, 80, 3456, 512, 576, 96, 27648, 576, 672, 4096, 4608, 120, 4608, 128, 248832, 768, 864, 768, 36864, 152, 960, 896, 41472, 168, 6144, 176, 6912, 6144, 1152, 192, 331776
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*4^(PrimeOmega[n]), {n, 1, 100}] (* G. C. Greubel, May 20 2016 *)
    f[p_, e_] := (4*(p+1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 17 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = 4*(f[k,1]+1)); factorback(f);} \\ Michel Marcus, May 21 2016

Formula

Multiplicative with a(p^e) = (4*(p+1))^e. If n = Product p(k)^e(k) then a(n) = Product (4*(p(k)+1))^e(k).
a(n) = A165825(n) * A003959(n) = 4^bigomega(n) * A003959(n) = 4^A001222(n) * A003959(n).

A351521 Dirichlet g.f.: Product_{p prime} (1 + 4*p^(-s)).

Original entry on oeis.org

1, 4, 4, 0, 4, 16, 4, 0, 0, 16, 4, 0, 4, 16, 16, 0, 4, 0, 4, 0, 16, 16, 4, 0, 0, 16, 0, 0, 4, 64, 4, 0, 16, 16, 16, 0, 4, 16, 16, 0, 4, 64, 4, 0, 0, 16, 4, 0, 0, 0, 16, 0, 4, 0, 16, 0, 16, 16, 4, 0, 4, 16, 0, 0, 16, 64, 4, 0, 16, 64, 4, 0, 4, 16, 0, 0, 16, 64
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 17 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n]^2 * 4^PrimeNu[n], {n, 1, 100}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 4*X))[n], ", "))

Formula

Dirichlet g.f.: zeta(s)^4 * Product_{prime p} (1 + (4 - 15*p^s + 20*p^(2*s) - 10*p^(3*s))/p^(5*s)).
a(n) = A008966(n) * A035116(n). - Enrique Pérez Herrero, Oct 27 2022
Multiplicative with a(p) = 4, and a(p^e) = 0 for e >= 2. - Amiram Eldar, Dec 25 2022

A166625 Totally multiplicative sequence with a(p) = 4p for prime p.

Original entry on oeis.org

1, 8, 12, 64, 20, 96, 28, 512, 144, 160, 44, 768, 52, 224, 240, 4096, 68, 1152, 76, 1280, 336, 352, 92, 6144, 400, 416, 1728, 1792, 116, 1920, 124, 32768, 528, 544, 560, 9216, 148, 608, 624, 10240, 164, 2688, 172, 2816, 2880, 736, 188, 49152, 784, 3200
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n 4^PrimeOmega[n],{n,50}] (* Harvey P. Dale, Jan 20 2014 *)
  • PARI
    a(n) = n*4^bigomega(n); \\ Altug Alkan, May 19 2016

Formula

Multiplicative with a(p^e) = (4p)^e.
If n = Product p(k)^e(k) then a(n) = Product (4*p(k))^e(k).
a(n) = n * A165825(n) = n * 4^bigomega(n) = n * 4^A001222(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 4 * p^(1 - s)). - Ilya Gutkovskiy, Oct 30 2019

A167296 Totally multiplicative sequence with a(p) = 4*(p-2) for prime p.

Original entry on oeis.org

1, 0, 4, 0, 12, 0, 20, 0, 16, 0, 36, 0, 44, 0, 48, 0, 60, 0, 68, 0, 80, 0, 84, 0, 144, 0, 64, 0, 108, 0, 116, 0, 144, 0, 240, 0, 140, 0, 176, 0, 156, 0, 164, 0, 192, 0, 180, 0, 400, 0, 240, 0, 204, 0, 432, 0, 272, 0, 228, 0, 236, 0, 320, 0, 528, 0, 260, 0, 336
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 2)^fi[[All, 2]])); Table[a[n]*4^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 06 2016 *)
    f[p_, e_] := (4*(p-2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 18 2023 *)

Formula

Multiplicative with a(p^e) = (4*(p-2))^e. If n = Product p(k)^e(k) then a(n) = Product (4*(p(k)-2))^e(k).
a(2k) = 0 for k >= 1.
a(n) = A165825(n) * A166586(n) = 4^bigomega(n) * A166586(n) = 4^A001222(n) * A166586(n).
Showing 1-10 of 13 results. Next